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This study describes a GIS-based software tool for the qualitative assessment of deserti-
fication risk. The tool integrates results from several land degradation models into ArcGIS
using the object-oriented programming language Visual Basic. The integration of GIS and
models is based on different coupling approaches.
The proposed methodology was developed and tested on Sardinia Island (Italy). Six driving
factors of desertification (overgrazing, vegetation productivity, soil fertility, water erosion,
wind erosion and seawater intrusion) were model-simulated over two time periods to
investigate the spatio-temporal evolution pattern of desertification-prone areas. Model
results were normalized, weighted and combined into an Integrated Desertification Index
(IDI) ranging from 0 to 1 (representing the best and the worst conditions, respectively),
and classified into five desertification risk levels.
The implementation, performance of the methodology and benefits provided by the
modelling approach to land management authorities for monitoring processes of land
degradation are fully described in the paper.

� 2009 Elsevier Ltd. All rights reserved.
Introduction

Desertification is an irreversible process (Mainguet, 1994) driven by several interconnected factors and triggered by the
combination of the natural predisposition of the environment with human pressure and climate change (Adamo & Crews-
Meyer, 2006; UNCED, 1992). Desertification mainly occurs in drylands (e.g. Dregne, Kassas, & Rozanov, 1991; Kassas, 1995;
Sivakumar, 2007), but it affects a wide variety of environments, climates and societies (e.g. Arnalds, 2006).

Given the multi-faceted and multi-disciplinary aspects of desertification, the interest of political institutions and research
communities has supported the development of different methods of analysis based on empirical approaches (e.g. FAO/UNEP
1984; Geist & Lambin, 2004; Grunblatt, Ottichilo, & Sinange, 1992; Kosmas, Kirkby, & Geeson, 1999; Liu, Gao, & Yang, 2003;
Mouat et al., 1997; Sepehr, Hassanli, Ekhtesasi, & Jamali, 2007), remote sensing applications (e.g. Fang et al., 2008; Feoli,
Giacomich, Mignozzi, Oztürk, & Scimone, 2003; Gad & Lofty, 2008; Hill, Stellmes, Udelhoven, Röder, & Sommer, 2008; Lira,
2004; Röder, Udelhoven, Hill, Del Barrio, & Tsiourlis, 2008; Shalaby and Tateishi, 2007; Wen-yi, When-hua, Su-fang, & Dan,
2005; Zhang et al., 2008), and modelling procedures (e.g. Ding, Chen, & Wang, 2009; Helldén, 2008; Ibánez, Martinez, &
Puigdefábregas, 2008; Ibánez, Martinez, & Schnabel, 2007; Salvati, Zitti, & Ceccarelli, 2008; Sasikala & Petrou, 2001).
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Methodologies initially proposed did not allow for spatially explicit analysis of the problem. Advances in spatial sciences
enabled the implementation of early ‘lumped’ approaches into the Geographic Information Systems (GIS) logic. Traditional
GIS-based methods (e.g. Basso et al., 2000; Costantini et al., 2004; Feoli et al., 2003; Grunblatt et al., 1992; Kosmas et al., 1999;
Liu et al., 2003; Motroni, Canu, Bianco, & Loj, 2009; Mouat et al., 1997) used static indicators, which are inadequate to analyse
dynamic phenomena. In contrast, modelling has been recognized as an important technique to analyse and describe the
spatio-temporal evolution of desertification and the effect of socio-economic dynamics and ecological components on land
degradation (e.g. Danfeng, Dawson, & Baoguo, 2006).

Earlier approaches focused on assessing vulnerability, defined as the degree to which a system is likely to suffer from
damage and loss due to desertification. There is a lack of works focusing on the difference between vulnerability and risk
(e.g. Rahman, 2008), i.e., the quantifiable damage or loss in relation to the value (e.g. human well-being, land productivity) of
a region threatened by desertification (MEA, 2005). Givetrun n the large number of people living within or near areas subject
to desertification, this phenomenon must be assessed in terms of risk.

Common desertification vulnerability assessments were often limited to climate index analysis (e.g. Helldén & Tottrup,
2008; Millán et al., 2005; Zhai & Feng, 2009), in most cases focusing on meteorological, agricultural or hydrological droughts
(e.g. Durão, Pereira, Costa, Côrte-Real, & Soares, 2009; Zhai & Feng, 2009). Climate change does not represent the only factor
driving land degradation processes, although it contributes to altering critical thresholds beyond which systems can no longer
maintain their equilibrium (e.g. Kosmas et al., 1999). The concept of desertification assumed here refers to the final and
irreversible state of land degradation processes (e.g. Hill et al., 2008), triggered by the interaction of climate with a number of
either predisposing or accelerating environmental and anthropogenic components (e.g. Dragan, Sahsuvaroglu, Gitas, & Feoli,
2005; Salvati and Zitti, 2008; Wessels et al., 2007). For this reason, rather than using climate average– or climate variability-
based indices, this work focused on including them in a more complex evaluation of their interactions with local charac-
teristics towards land degradation.

The temporal component of land degradation processes should be incorporated into the risk analysis (e.g. Fang et al., 2008;
Haijiang, Chenghu, Weiming, En, & Rui, 2008; Hanafi & Jauffret, 2008; Lu, Mausel, Brondizio, & Moran, 2004; Ringrose,
Vanderpost, & Matheson, 1996; Zhang et al., 2008): an area mildly degraded subject to an intense and rapid desertification
process is more at risk when compared to an area at higher degradation level but stable over time.

A new methodology is presented here which integrates GIS with environmental models to simulate land degradation
processes and to provide a comprehensive index of desertification.

Strategies for integrating models with GIS have been discussed and analysed by many researches (e.g. Al-Sabhan, Mulligan,
& Blackburn, 2003; Batty & Xie, 1994; Brown, Riolo, Robinson, North, & Rand, 2005; Gemitzi & Tolikas, 2007; Karimi &
Houston, 1996), emphasizing two different types of coupling: loose and fully tight. Loose coupling consists of data file
transferring between GIS and an external modelling program. This method enables to exploit the cartographic potential of GIS
and provides the model developers with the required flexibility in choosing the most appropriate models to integrate and the
user interface to build. The main drawback is that the loose coupling requires the development of further tools to format data
files properly. With fully tight coupling, the models are entirely developed within a GIS platform using its programming
languages and analytical functionalities. Neither GIS knowledge nor intermediate file conversion or processing are required
by the model users. Despite being more refined, such methods do not allow transferring sophisticated model codes into GIS
languages which are often more restrictive. Further intermediate categories of coupling were individuated by other authors
(Fedra, 1993; Nyerges, 1993; Sui & Maggio, 1999). Brandmeyer and Karimi (2000) well defined the categories into a five layer
pyramid describing the increasing level of integration from one-way data transfer (manual transfer of data to model), to loose
coupling (the data transfer is automatic), to shared coupling (there are one or more Graphical User Interfaces, GUIs, with
separate or common data storage, respectively), to joined coupling (having a single GUI and common data storage), to tool
coupling (consisting in embedded models, single GUI and common data storage).

Besides the two extremes loose and fully tight coupling, an intermediate type used here consists in designing a stand-alone
model, independent from GIS-based software, but able to process data in GIS formats (e.g. Huang & Jiang, 2002). This
approach provides several benefits enabling both to input GIS dataset into executable routines written in faster computing
languages, avoiding time-consuming loop procedures of less efficient GIS languages, and to readily analyse the output data
through GIS tools. This method is here referred to as simply tight coupling.

In this paper, the GIS implementation of the proposed desertification risk evaluation tool is described and its application to
Island of Sardinia (Italy) is presented and discussed.

Study area description

The region of Sardinia has an area of 24 089 km2, and is located in the centre of the western part of the Mediterranean Sea
(Fig. 1).

The mean annual temperature ranges from 11 �C to 17 �C, while the rainfall varies from 500 mm to more than 1000 mm
over the high mountainous areas. Very dry years are often followed by short periods of heavy rainfall, triggering disastrous
erosion and flooding events at the local level (Aru, Tomasi, & Vacca, 2006).

The Island is characterized by a high variability of landscapes due to its heterogeneous geologic, morphological, soil and
vegetation characteristics. Sardinia is divided into several morphological regions: mountains cover 18.5% of the total area,
67.9% of the territory is hilly and plains characterize the remaining 13.6%. Nearly 40% of the Island is covered by meadows and
Please cite this article in press as: Santini, M., et al., A multi-component GIS framework for desertification risk assessment by an
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Fig. 1. Location and topographic/vegetation characteristics of the study area from a LANDSAT 7-derived mosaic collected in May 2005.
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pastures, Mediterranean macchia occupies over 20% of the surface, whereas the hardwood forests cover up to 10% of the total
area (Vacca, Loddo, Serra, & Aru, 2001).

The main human-related activity causing land degradation in Sardinia is represented by grazing (D’Angelo et al., 2000;
Enne, Pulina et al., 2000). Grazing accelerates soil erosion (key element of desertification) by removing vegetation cover,
compacting the soil and reducing water infiltration (Aru et al., 2006; Zucca, Canu, & Della Peruta, 2006). Additional causes of
desertification in Sardinia are local droughts (Fiori, Motroni, Duce, & Spano, 2004), mismanagement and salinization of
groundwater resources, intense wildfire activity (Aru, 1986; Bajocco & Ricotta, 2008), and decrease in vegetation cover as
result of deforestation and agricultural land abandonment following their overexploitation (Giordano & Marini, 2008;
Pungetti, 1995).

Insularity represents another predisposing factor of desertification: according to MEA (2005), insularity strengthens the
links between ecosystems and local people and improves access to natural resources, resulting in an increased human
pressure and island vulnerability.

A good review on land degradation processes in Sardinia can be found in Enne, Zanolla, & Peter (2000) while recent studies
(Costantini et al., 2004; Motroni et al., 2009) on desertification vulnerability assessment in the island represented a good
starting point to develop the new proposed approach.

Materials and methods

General framework

The desertification risk tool here proposed is based on the analysis of several indicators combined together to provide
a comprehensive assessment of the phenomenon. Suitable desertification indicators must be able to capture the degradation
Please cite this article in press as: Santini, M., et al., A multi-component GIS framework for desertification risk assessment by an
integrated index, Applied Geography (2009), doi:10.1016/j.apgeog.2009.11.003
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processes affecting the study area and to incorporate the role of climate and land use components, two key driving factors of
land degradation. After an extensive analysis of both the conditions and the evolution of natural features in the study area
(Aru, 1986; Costantini et al., 2004; Motroni et al., 2009), through field investigations and spatial data investigation, a suite of
appropriate indicators of land degradation have been identified on the basis of their applicability and sensitivity to envi-
ronmental processes. The following six indicators were considered: overgrazing pressure, vegetation productivity, soil
fertility, water erosion, wind erosion and seawater intrusion. These indicators were quantified by selecting the most suitable
models according to the study area characteristics and data availability. Chosen models were different in type (process-based,
empirical and data-oriented) and degree of complexity.

In order to account for spatio-temporal variations in the intensity and distribution of land degradation processes
(e.g. Giordano & Marini, 2008), the proposed procedure was applied to two reference periods: as representative of past
conditions the early 1990s were considered; for the most recent conditions the 2005 was the base-year. Focusing on these
two different points in time, the datasets used encompassed a wider time scope with the first analysing 1990–1994, and the
second 2003–2007. These two time frames were chosen based on their similarity in accessibility, quality and resolution of
input data. Each model was thus run against both reference periods, using the proper temporal datasets.

The model outputs were first standardized (when necessary) to obtain indices of identical value range (Liu et al., 2003).
The threshold values that represented the critical conditions for normalizing the outputs were chosen on a land use basis in
order to establish a relative scale of severity, weighting the results by the use of lands in the study area (Al-Adamat, Foster, &
Baban, 2003). Finally, the indices were integrated into a single index taken as representative of the desertification risk.

Besides taking into account the changes in terms of desertification severity over time, the final index was formulated to
rank the relative importance of the different degradation processes in characterizing the land degradation over the study
region. The analysis combined local expert judgements and statistical methods to determine the weighting of each model
accordingly to its importance. The desertification risk index was classified into five levels of severity, and then processed to
extract hot-spots of desertification, namely the areas seriously affected by risk.

Fig. 2 represents an outline of the approach, which will be detailed further in the next sections.
In this work, up to one hundred GIS data layers (in vector and grid format) have been acquired and processed in order to

supply the six models with the necessary inputs. Table 1 lists the core database and its characteristics: from these basic
datasets numerous other layers were derived.

The implementation of the spatial methodology made use of a grid-based system at 50 m cell resolution, as a reasonable
compromise between the finer (e.g. land use, topography) and coarser (e.g. climate) dataset resolutions.

In the following sections, the theoretical principles on which each model is based are discussed, with particular attention
to the parameters used, tuning settings applied, and suitability of the model to work within a GIS environment. Formulation
of the integrated desertification index is then introduced and explained.

Model to evaluate overgrazing pressure: CAIA
Overgrazing is one of the main factors of land degradation observed in the Mediterranean region (e.g. Yassoglou, 1999). In

Sardinia, an excessive cattle pressure affects the lands by compacting the soil and reducing the vegetation cover, both of
which lead to decreased soil structure and stability (Aru et al., 2006).

The model CAIA (Pulina, 2000; Pulina & Zucca, 1999) formulates the land degradation as a function of grazing intensity and
land carrying capacity. By combining the estimation of the cattle load sustained by a specific territory with analysis of its
environmental characteristics, the model estimates the sustainable grazing load for that same territory. In Sardinia, this
Fig. 2. Flowchart showing the links among temporal databases, modelled degradation processes and final desertification index. Boxes with horizontal shading
refer to 1990-1994 time period of analysis. Boxes with vertical shading refer to 2003-2007 time period of analysis. Diagonally shaded boxes symbolize
components in common between the two periods. Elliptical text frames represent models, and white filled box the output of the procedure.
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Table 1
Main characteristics of available datasets, listing format, unit, resolution/scale, time period of reference, source and model of application.

Description Type Unit of
measure

Resolution
Scale

Reference
period

Source Models

Corine Land cover 1990 Polygon – 1:1000000 1990 1 All
Corine Land cover 2000 Polygon – 1:1000000 2000 1 All
Corine Land cover 2003 Polygon – 1:250000 2003 2 All

Pedologic map
Soil depth Polygon Categorical (cm) 1:500000 2005 3 CAIA
Rockiness Polygon Categorical (%) 1:500000 2005 3 CAIA
Stoniness Polygon Categorical (%) 1:500000 2005 3 CAIA
Texture Polygon Categorical (%) 1:500000 2005 3 CAIA, RUSLE,

CENTURY, WEAM
Drainage Polygon Categorical 1:500000 2005 3 CAIA
Permeability Polygon Categorical

(cm/h)
1:500000 2005 3 CAIA, SHARP

Available water content Polygon Categorical
(mm/m)

1:500000 2005 3 CENTURY

Soil organic matter Polygon Categorical (%) 1:500000 2005 3 CAIA, RUSLE, CENTURY
Density Polygon g/cm3 1:500000 2005 3 CENTURY, WEAM

AGEA – crop data Alphanumeric % of Crop for
each unit

1:20000 1995 and 2004 4 CENTURY

AGEA – zootechnical
consistency

Alphanumeric Number of
cattle head

1:20000 1995–2003–2004 4 CAIA

Forest map Polygon – 1:1000000 2002 2 CENTURY
Geolithologic/

permeability map
Polygon – 1:1000000 N/A 3 SHARP

Geologic map Polygon – 1:2000000 N/A 2 SHARP
Geologic map Raster – 1:1000000 Various 5 SHARP
Digital elevation model Grid m asl 25 m NA 6 CAIA, RUSLE,

SHARP
Railway map Line – 1:100000 2003 2 RUSLE
Ground water resources

(aquifer type)
Polygon – 1:5000000 1982 (updated 2006) 5 SHARP

Hydrographic map Line – 1:100000 2003 3 RUSLE

Wells
Depth of the static
piezometric level

Points m N/A Various 5 SHARP

Elevation of the well asl Points m asl N/A Various 5 SHARP
Piezometric elevation of
the water table

Points m asl N/A Various 5 SHARP

Number of aquifer met Points unitless N/A Various 5 SHARP
Maximum/mean
discharge

Points l/s N/A Various 5 SHARP

Well depth Points m N/A Various 5 SHARP
Top and bottom of the
aquifer layer

Points m asl N/A Various 5 SHARP

Stratigraphy Points m asl N/A Various 5 SHARP

Climate
Mean temperature Points or grid �K 50 km

(grid)
1994–2007 7,8,9 MOD17, WEAM,

SHARP
Dew point temperature Points �K N/A 1994–2007 8 MOD17, WEAM
Wind speed Points m/s N/A 1994–2007 8,9 WEAM
Maximum temperature Points �K N/A 1994–2007 8,9 CENTURY
Minimum temperature Points �K N/A 1994–2007 8,9 CENTURY, MOD17
Precipitation Points mm/month N/A 1982–2007 2 CAIA, RUSLE,

CENTURY, SHARP
Total precipitation
amount

Points mm/day N/A 1994–2007 8,9 RUSLE, CENTURY

Solar radiation Points or grid MJ/Day 50 km
(grid)

1975–2007 7 MOD17

(continued on next page)
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Table 1 (continued)

Description Type Unit of
measure

Resolution
Scale

Reference
period

Source Models

Road maps Line – 1:100000 2003 2 RUSLE
Phenologic calendars Alphanumeric – N/A 2006 3 CENTURY
FPAR MODIS Grid Unitless 10000 m 2003 – 8days

synthesis
10 MOD17

NDVI MODIS Grid Unitless 250 and
1’000 m

2003 – 8days
synthesis

10 MOD17, RUSLE, WEAM

LAI MODIS Grid Unitless 10000 m 2003 – 8days
synthesis

10 WEAM

NDVI AVHRR Grid Unitless 10000 m 1995 – 7days
synthesis

11 MOD17, RUSLE, WEAM

1 – European Environment Agency, http://www.eea.europa.eu/publications/COR0-landcover.
2 – Regional Administration of Sardinia (RAS).
3 – Agriconsulting S.p.A. (Italy), http://www.agriconsulting.it/inglese/htm/intro.htm.
4 – Italian Payment Board for Agriculture (AGEA) (Italy), http://www.agea.gov.it/portal/page/portal/AGEAPageGroup/HomeAGEA.
5 – High Institute for Environmental Protection and Research (ISPRA) (Italy), http://www.mais.sinanet.apat.it/cartanetms/.
6 – Italian Military Geographic Institute (IGMI) (Italy), http://www.igmi.org/.
7 – MARS-STAT DATABASE – Joint Research Center (JRC) (Italy), http://mars.jrc.it/mars/About-us/AGRI4CAST/Data-distribution.
8 – National Oceanic and Atmopheric Administration (NOAA), http://www.ncdc.noaa.gov/oa/ncdc.html.
9 – Central Office for Crop Ecology (UCEA) (Italy), http://www.politicheagricole.it/ucea/forniture/index3.htm.
10 – Moderate resolution Image Spectroradiometer (MODIS), https://wist.echo.nasa.gov/wist-bin/api/ims.cgi?mode¼MAINSRCH&JS¼1.
11 – Advanced Very High Resolution Radiometer (AVHRR), http://www.class.ncdc.noaa.gov/release/data_available/avhrr/index.htm.
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methodology has been successfully applied in the past, specifically to extensive and semi-extensive grazing lands (Madrau,
Loi, & Baldaccini, 1998).

Any effect relating to the grazing pressure can be evaluated from 20 sub-coefficients, measuring: animal (bovine, ovine
and sheep) vegetation consumption and trampling on soil, animal productivity (low, medium or high productive level) and
grazing management (extensive or intensive). The sum of these sub-coefficients identifies the b coefficient which repre-
sents a weighing factor for the live weight X of the Fully-Grown Unit (FGU) of a given species present in a territory with
surface area S.

Considering these assumptions the grazing intensity in the territory (actual CAIA) can be evaluated for a dataset with
dimension k (number of species of animals for each territorial unit), using the product:

ðX$ B$ bÞ=S (1)

where X is a vector of dimension (1, k), whose values indicate the number of FGU for different species; B is a matrix (k, 20) of
the twenty sub-coefficients of b; then b is the vector (20, 1) of the sub-coefficients and S is the total surface area (in Ha).

CAIA defines territorial units based on categories of surface elevation, slope, aspect, vegetation cover, rock surface cover,
drainage, soil depth, soil texture and available water content in soil. Each attribute is rated with a score ranging from 0 to 1,
referring to areas entirely suitable for grazing and inadequate for pasture activity, respectively. All these indices are then
summed for each territorial unit identifying a single index, stretched from 0 to 1 and classified into five levels of increasing
vulnerability to grazing (sustainable CAIA; e.g. D’Angelo et al., 2000).

Finally the overgrazing index derives from the ratio between the grazing load actually sustained by a territory (actual
CAIA) and potential grazing load capacity (sustainable CAIA). This index varies from 0 (no overgrazing pressure) to 1
(maximum overgrazing pressure).

The model structure used here is consistent with the fully tight coupling as the model was implemented using only
GIS-compatible formats and languages (Arcgis9.x, �ESRI).

Model to evaluate vegetation degradation: MOD17
The rate at which light energy is converted into plant biomass is called primary productivity and total amount of energy

converted is called Gross Primary Productivity (GPP). Net Primary Productivity (NPP) is the difference between GPP and
energy lost during plant respiration (Campbell, 1990). GPP can be estimated from satellite remote sensing using visible and
near infra-red spectral wavelengths. In this analysis, the MOD17 algorithm (Running, Nemani, Glassy, & Thornton, 1999) was
used to compute vegetation productivity. The Gross and Net Primary Productivity algorithm is based on Monteith’s (1972,
1977) equations, and designed for the MODIS (MODerate resolution Imaging Spectroradiometer) sensor, mounted on TERRA
satellite platform and providing a daily coverage of the globe at 1000 m of resolution. The GPP formula consists of two main
factors: one represents the Absorbed Photosynthetically Active Radiation (APAR, W m�2), and the other represents the
Radiation Use Efficiency (e, kgC M J�1), i.e., the amount of carbon produced per unit energy by specific vegetation types.

Developing these factors the formula becomes:

GPP ¼ APAR$3 ¼ ðPAR$ fPARÞ3 ¼ ðSWrad$ 0:45$ fPARÞ ð3max$mTmin$mVPDÞ (2)

where PAR is the incident Photosynthetically Active Radiation (W m�2) and it is assumed as the 0.45 of the Short Wave
Please cite this article in press as: Santini, M., et al., A multi-component GIS framework for desertification risk assessment by an
integrated index, Applied Geography (2009), doi:10.1016/j.apgeog.2009.11.003
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Table 2
Reclassification (first column) and description (second column) of the CLC classes (third column) used to set the parameters of MOD17 model. Columns from
4 to 8 report MOD17 algorithm parameters as described in Section 3.1.2. Footnotes report the description of CLC categories.

MOD17
classes

Description CLC classes 3 (kgC M J�1) Tmin_min (�C) Tmin_max (�C) VPD_min (Pa) VPD_max (Pa)

1 Evergreen Needleleaf
Forest

3.1.2 0.001008 �8.00 8.31 650 2500

2 Evergreen Broadleaf
Forest

3.1.1.1 0.001159 �8.00 9.09 1100 3900

4 Deciduous Broadleaf
Forest

3.1.1 (residual) 0.001044 �8.00 7.94 650 2500

5 Mixed Forest 3.1.3 0.001116 �8.00 8.50 650 2500
8 Grassy woodlands 2.2.1–2.2.2–2.2.3 0.000800 �8.00 11.39 930 3100
9 Wooded grasslands 2.4.4 0.000768 �8.00 11.39 650 3100
6 Closed shrublands 3.2.4 0.000888 �8.00 8.61 650 3100
7 Open shrublands 3.2.3 0.000774 �8.00 8.80 650 3600
10 Grasslands 3.2.1–3.3.3 0.000680 �8.00 12.02 650 3500
12 Croplands 2.1.1–2.1.2–2.1.3–2.4.1–2.4.2–2.4.3 0.000680 �8.00 12.02 650 4100

3.1.2: Coniferous forest.
3.1.1.1: Forests with dominant holm and cork oaks.
3.1.1: Broad-leaved forest.
3.1.3: Mixed forest.
2.2.1–2.2.2–2.2.3: Vineyards – Fruit trees and berry plantations – Olive trees.
2.4.4: Agro-forestry areas.
3.2.4: Transitional woodland-shrubs.
3.2.3: Sclerophyllous vegetation.
3.2.1–3.3.3: Natural grassland – Sparsely vegetated areas.
2.1.1–2.1.2–2.1.3–2.4.1–2.4.2–2.4.3: Non-irrigated arable land – Permanently irrigated land – Rice fields; Annual crops associated with permanent crops –
Complex cultivation patterns; Land principally occupied by agriculture, with significant areas of natural vegetation.
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incoming Radiation (SWRad, W m�2), fPAR (unitless) is the fraction of the PAR absorbed by vegetation, 3max (kgC M J�1) is the
biome-specific maximum conversion efficiency and mTmin and mVPD are two scalar reduction factors, computed by crossing
the minimum temperature (Tmin, in �C) and the Vapour Pressure Deficit (VPD, in Pa) with their lower and upper limits
(Tmin_min, Tmin_max and VPD_min, VPD_max, respectively), necessary to each biome type in order to calculate GPP.

In the present application, the MOD17 algorithm was rewritten using the fPAR-MODIS product (Running et al., 1999),
supplied as an 8-day composite, after grouping the land cover categories of the Corine Land Cover dataset (CLC hereafter;
http://www.eea.europa.eu/publications/COR0-landcover) according to the typical vegetation communities of Mediterranean
ecosystems. For the biome types, proper parameters were associated on the basis of their correspondence with the MOD17
vegetation classes (Table 2; Running et al., 1999).

The daily data of meteorological stations from different datasets, interpolated to grids, were used to account for Tmin,
whereas for SWrad the MARS-STAT database was used (see Table 1). The VPD was calculated including the mean daily
temperature (t_mean) and the mean daily dew point temperature (t_dewpt), according to the following relationship:

VPD ¼ 611
�

exp
�

19:84
�

1� 273:15
t mean

��
� exp

�
19:84

�
1� 273:15

t dewpt

���
(3)

Both VPD and Tmin where averaged on an 8-day basis, matching the temporal resolution of the fPAR-MODIS product.
Furthermore, the algorithm was improved by embedding: (i) a gap-filling procedure in order to replace the fPAR pixels not

satisfying a minimum qualitative level; (ii) a spatial downscaling of the remotely sensed data from the original 1000 m cell
size to 50 m working resolution.

In the gap-filling, any invalid (low quality or missing) pixel in the fPAR image at a given time t was replaced with the mean
value, over that same pixel, calculated using t-1 and tþ 1 images. If still invalid, the temporal interval was extended to include
maximum t-4 and tþ 4 dates to include only valid fPAR pixels.

For the downscaling, first the ratios on a pixel by pixel basis between fPAR and MODIS Normalized Difference Vegetation
Index (NDVI) images (MOD13A2,1000 m resolution) were derived. Second, each ‘ratio’ pixel, resampled to 250 m of resolu-
tion, was back-multiplied by the sixteen NDVI pixels at 250 m of resolution (MODIS MOD13Q1 product) contained within the
coarser MOD13A2 pixel. Third, a mixed-pixel approach was used to spatially distribute the fPAR inside the 250 m pixel
according to the land use type fractional cover dictated by the more detailed CLC dataset, obtaining fPAR maps at 50 m
resolution.

As MODIS started to acquire data from 2000, the time period 1990–1994 sourced NDVI data from Advanced Very High
Resolution Radiometer (AVHRR, 1000 m resolution) images to derive fPAR using 7-day synthesis according to the relation-
ships identified in the literature review (i.e. Chang & Wetzel, 1997). Thus fPAR was downscaled from such resolution to 50 m
directly using the third step outlined above.
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For the actual period model run, yearly GPP was computed by summing the 46 MODIS-based GPP maps multiplied by
respective days of coverage (8 for the first 45 maps of the year and 5 for the last one); for the past, the 52 AVHRR-derived GPP
maps of the year were multiplied by 7 and then summed together.

A GIS-tool processing datasets in raster format, exclusively running within ArcGIS9.x software and producing the yearly
GPP map was developed. This is a fully tight coupling in the sense that the model was written using GIS languages, formats and
functions.

Model to evaluate soil degradation: CENTURY
The loss of organic matter and nutrients is a primary degradation process affecting the soil. This phenomenon interacts

with other soil deterioration processes: e.g., the decrease of vegetation cover, the reduction of water retention capacity and
the increase of erosion risk. The CENTURY model (Parton, Schimel, Cole, & Ojima, 1987) simulates energy balance and the
cycle of different nutrients (water, carbon, nitrogen, phosphorus and sulphur) between soil and vegetation and across three
main types of land use: agriculture, grassland and forests. The list of input data and parameters required by the model is
reported in Table 3.

In this application, CENTURY was applied to ten vegetation classes: broadleaf forest, needleleaf forest, mixed forest,
Mediterranean macchia, grassland/pasture, vineyard, orchard, olive-grove, rice and seeded cultivations. These classes were
initially extracted through aggregation of the CLC categories. While information regarding the arboriculture areas was
directly derived from the CLC, the spatial detail and information contained in the CLC for the forested areas were improved
by cross-analysing it with the Forest Map of Sardinia. The CLC information for the seeded croplands was integrated with
a dataset provided by the National Payments Board for Agriculture (AGEA). Specific land management practices were then
associated to each land use class according to the directives for the Good Agricultural Practices (following the EU
Commission Regulation 1750/1999) and to the phenological calendars. Besides geographic site location (rows 1 and 2 in
Table 3), the monthly statistics of climate variables (rows 3–6 in Table 3) were interpolated into grids using a meteoro-
logical dataset collected from 417 weather stations in the study area between 1982 and 2007. This dataset was subsequently
divided into two temporal subsets covering, respectively, the 1982–1995 time interval (used to extract climate averages
representative of the earlier reference period) and the 1996–2007 time interval (representative of the later reference
period). The soil characteristics (rows 7–13 in Table 3) were extrapolated using the data layers contained in the Pedologic
Map of Sardinia. The remaining parameters required by the model (row 14–33 in Table 3) were derived from the existing
Table 3
List of the main inputs to CENTURY model and their units.

Input Unit of measure

1. Latitude of simulation site cm/month
2. Longitude of simulation site �

3. Mean of monthly precipitation amount �

4. Standard deviation of monthly precipitation amount cm/month
5. Minimum air temperature at 2 meters �C
6. Maximum air temperature at 2 meters �C
7. Sand fraction in the soil Unitless
8. Silt fraction in the soil Unitless
9. Clay fraction in the soil Unitless
10. Soil density g/cm�3

11. Wilting point cm H2O per cm of soil
12. Field capacity cm H2O per cm of soil
13. pH Unitless
14. Initial surface C with slow turnover gC/m2

15. Initial soil C with slow turnover gC/m2

16. Initial soil C with intermediate turnover gC/m2

17. Initial soil C with fast turnover gC/m2

18. Initial surface ratio C/N with slow turnover Unitless
19. Initial soil C/N ratio with slow turnover Unitless
20. Initial soil C/N ratio with intermediate turnover Unitless
21. Initial soil C/N ratio with fast turnover Unitless
22. Carbon content in the superficial litter gC/m2

23. Carbon content in the soil litter gC/m2

24. Initial C/N ratio of superficial litter with slow turnover Unitless
25. Initial C/N ratio of soil litter with slow turnover Unitless
26. Initial leaf C in forest ecosystems gC/m2

27. Initial leaf C/N ratio in forest ecosystems Unitless
28. Initial wood C in forest ecosystems gC/m2

29. Initial wood C/N ratio in forest ecosystems Unitless
30. Initial root C in forest ecosystems gC/m2

31. Initial root C/N ratio in forest ecosystems Unitless
32. Initial carbon on death wood gC/m2

33. Initial carbon on death root gC/m2
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literature (e.g. Augusto, Ranger, Binkley, & Rothe, 2002; Giardina, Ryan, Hubbard, & Binkley, 2001; Jackson, Mooney, &
Schulze, 1997; Schenk & Jackson, 2002; White, Thornton, Running, & Nemani, 2002). In order to produce a single geo-
dataset storing all the required information, climate, soil and land cover layers were combined in Land Homogeneous
Units (LHUs).

Among the numerous outputs calculated by the model, the most important to assess the soil productivity in the first 20 cm
of soil thickness is its organic carbon content (gC/m2), chosen here as a proxy of the soil fertility.

CENTURY does not represent a spatially explicit model as it was originally developed to work at single site/point level. In
order to apply spatial logic to the model, a tool was implemented in Visual Basic which sequentially processes the LHU
attribute table, runs the CENTURY model against all the records (polygons) and writes the output to a text table. Finally the
text table was joined back to the LHU layer, exploiting the shapefile polygon geometry to provide a spatial dimension to the
model output. In this case, a loose coupling between the model and GIS was applied.
Model to evaluate soil erosion by water: RUSLE
The water erosion process consists of the removal of soil caused by rain impact, runoff and gravity and is the most

significant erosion phenomenon in the northern part of the Mediterranean basin (Zucca et al., 2006). Different kinds of
models were developed to predict erosion, either related to a single event or averaged over the long term, empirical or
physically based (e.g. Verheijen, Jones, Rickson, & Smith, 2009).

The RUSLE (Revised Universal Soil Loss Equation; Renard, Foster, Weesies, McCool, & Yoder, 1997) was chosen because it is
widely used and scientifically sound, as applied and verified for different landscape scenarios, even in very complex
topographies. In this model, each variable influencing erosion is associated to an index representing the effect of the variable
on erosion according to the magnitude of the specific index. RUSLE is expressed as follows:

A ¼ R$K$LS$C$P (4)

where A (t ha�1 year�1) is the computed soil loss per unit area, R (MJ mm ha�1 h�1 year�1) is the rainfall-runoff factor, K
(t h MJ�1 mm�1) is the soil erodibility factor, LS (unitless) is the slope length/steepness factor, C (unitless) is the soil cover and
management factor and P (unitless) is the support practice factor, accounting for the management of protection of soil against
erosion.

For this work, the model was refined in order to ensure consistency in the production of the direct inputs for the RUSLE
equation. In computing R and K factors, Arnoldus (1980) and Renard et al. (1997) equations were both implemented, whereas
estimation of other factors was customized by implementing key processing features better suited to the case study and in
accordance with the available datasets.

The LS factor was computed from the Digital Elevation Model (DEM) integrating Tarboton (1997) and Nearing (1997)
algorithms to evaluate hillslope length and steepness contributions in estimating the upslope surface draining water to
each pixel of the map. While the role of P factor is often neglected because of the lack of case studies to assess it, in
this work it was formulated to account for those areas that do not generate any flow (non erodible areas) and/or areas
that stop the flow (breaklines). Across the landscape these features are represented, for example, by the boundaries
among adjacent patches with different land uses (where there are often furrows to drain overland flow of water) or by
the roads and the railway lines (whose border often have bumps). Following the approach of Van Oost, Govers, and
Desmet (2000), these two types of behaviour have been directly implemented into the LS factor computing scheme,
introducing a zeroing of the drained area where non erodible spots or breaklines occur. This integration of P and LS
factors could also account for the effects of prevention or mitigation actions undertaken against erosion inside
a specific land use type (e.g. ditches for water drainage) under the Regional guidelines for the Good Agricultural
Practices.

Concerning the C factor, the following relationship was adopted to derive it:

C ¼ 1� exp
�

2:5$NDVI
1� NDVI

�
(5)

(Van der Knijff, Jones, & Montanarella, 2000), using as NDVI values the monthly averages from MODIS or AVHRR products
depending on the reference period, and applying them the same gap-filling and downscaling procedures specifically
developed in the vegetation productivity model.

The type of GIS-model coupling used for RUSLE reflects the simply tight one, as the model (written in FORTRAN 90/95) is
stand-alone, but it reads input and creates output data in GIS formats.

Model to evaluate soil erosion by wind: WEAM
Wind erosion consists of the removal and transport of particles: the largest particles can be moved through creep and

saltation, whereas the smallest ones move through suspension: this process is most significant for air pollution, damage to
crops and climatic impacts (e.g. Fratini, Santini, Ciccioli, & Valentini, 2009). Wind erosion often occurs when the soil is fine,
dry and loose, the terrain is flat, there is no vegetation, the space is wide-open and the wind speed is sufficiently high to
remove the soil. Among various existing schemes to evaluate wind erosion by suspension, the evolution of theories by
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Shao, Raupach, and Leys (1996) into the WEAM (Wind Erosion Assessment Model) was considered. Following Lu and Shao
(2001), size-resolved vertical dust fluxes F(d) (gm�2 s�1) are predicted as:

FðdÞ ¼ 0:12$Ca$g$f $rb

p
$QðdÞ (6)

where d is the particles diameter (m), Q(d) (kg m�1 s�1) is the size-resolved horizontal flux of saltating particles, Ca is
a coefficient of order 1, g (m s�2) is the acceleration of gravity, f is the total volumetric fraction of dust in the sediment, rb is the
soil bulk density (kg m�3) and p (N m�2) is the soil penetration resistance. The last two parameters were assessed here
according to the textural information contained in the Pedologic Map of Sardinia. In the present study, the computing of
vertical fluxes F was limited to particles with diameters up to 40 mm considered as falling in the dust range.

The horizontal flux Q(d) can be before modelled as (Lu & Shao, 2001):

QðdÞ ¼
(�

c$r$u3
� =g
	h

1� ðu�tðdÞ=u� Þ2
i

u� � u�tðdÞ
0 u� < u�tðdÞ

)
(7)

where the coefficient c is of order 1, r (kg m�3) is the air density, u* (m s�1) is the actual friction velocity and u*t (m s�1) is the
threshold friction velocity.

Concerning the friction velocity, it was thus estimated from:

u� ¼ u,k

ln



z
z0

� (8)

where u is the wind speed measured at height z (10 m considering the available weather station dataset), k is the von
Karman’s constant (ca. 0.41), while z0 is the roughness length such that u¼ 0 when z¼ z0. Roughness length was associated
with land cover classes considering the work of Pineda, Jorba, Jorge, and Baldasano (2004), distinguishing between spring-
summer and fall-winter seasons.

Threshold friction velocity u*t, was assumed by Lu and Shao (2001) to be a function of the soil erodibility and was obtained
by correcting the threshold friction velocity u*t0 for bare and loose soil with two independent terms:

u�tðdÞ ¼ u�t0ðdÞ,SR,SH (9)

where

u�t0ðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0123

 
ap$g$dþ 1:65$10�4

r,d

!vuut (10)

being ap the ratio between the density of particles and that of the air.
In Eq. (9), SR accounts for the differences in the surface roughness with respect to the reference soil while SH accounts for

the differences in the moisture content. A further correcting term, accounting for the degree of soil aggregation and crusting
could be also present in Eq. (9); however, it has been assumed here to be equal to 1, because there is not a reliable way to
estimate it at this stage. The procedures adopted to estimate SR and SH were consistent with Fratini et al. (2009).

In this study, great attention was given to the computing of time variable SH from daily soil moisture information firstly
using the following formula to calculate the soil matric potential J:

j ¼
�

R$T
M

�
ln RH (11)

where R is the gas constant (8.31 J mol�1 K�1), M is the molecular weight of water (ca.18 g mol�1), T (�K) is the air temperature
and RH (unitless) the air relative humidity, both derived by the grid-interpolation of the daily meteorological weather station
data. The working hypothesis was that the moisture in the first millimetres of soil affected by wind erosion is in equilibrium
with the air moisture near the surface (Ravi & D’Odorico, 2005; Ravi, D’Odorico, Over, & Zobeck, 2004). Starting from the result
of Eq. (11), the volumetric content of water in surface soil (w, in m3 m�3) was determined using different algorithms, rep-
resenting its relationship with J, as performed in Fratini et al. (2009), and valid for a broad range of texture information
(Saxton, Rawls, Romberger, & Papendick, 1986), which in this study was derived from the Pedologic Map of Sardinia.

Computed emissions F were finally rescaled by a correction term Ev, corresponding to the vegetation cover fraction
responsible of soil protection. The following relationship was used:

Ev ¼ 1� expð�LAI=2Þ (12)

When applying Eq. (12) a random distribution of foliage above the soil and uniform leaf-angle distribution are assumed
(e.g. Lu & Shao, 2001). The Leaf Area Index (LAI) data were derived from MODIS LAI product (MOD15A2) at 1000 m of
resolution for the actual period of analysis and applying MODIS LAI and AVHRR-NDVI relationships (Zhangsi & Williams, 1997)
for the past period. In both cases, they are near-weekly data (8-day composite for MODIS and 7-day composite for AVHRR),
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representative of each day in the considered interval. The same gap-filling and downscaling procedures already used for fPAR
and NDVI processing were also applied to LAI data.

The model was not originally a spatial model, running at plot/field scale (Shao et al., 1996). For the purpose of this work,
a version enabled to spatially reproduce the phenomenon was implemented using FORTRAN 90/95 programming language, in
the form of a simply tight coupling.

Model to estimate salt water intrusion: SHARP
In coastal aquifers, if fresh and salt water are in equilibrium, the interface between the two domains remains stable. In the

case of over-pumping from coastal wells, it is possible that salt water moves inside the fresh water domain causing salini-
zation. This leads to negative consequences if groundwater is used to satisfy human and agricultural needs. Several recent
works refer to this problem in many coastal areas of Sardinia (Aru et al., 2006; Balia, Ardau, Barrocu, Gavaudo, & Ranieri, 2009;
Lecca & Cau, 2009).

To simulate the effects of water overexploitation, a modified version of the model SHARP (Essaid, 1990) was used in this
study. Among the inputs, the DEM and the geolithologic, geologic and hydrogeological maps were used to assess aquifer
characteristics. The database of the Italian Agency for the Protection of the Environment and the Technical Services (APAT),
data-entered in the context of the National Law n. 464/1984, was used to gather necessary information related to the
characteristics of wells (e.g. number, aquifer isolation, spatial distribution, depth, thickness of the open interval) and for the
successive interpolation of the water table level.

Besides the simulation of pumping effects, the calculation for the natural recharge of aquifers was introduced in
the model adopting a simplified water balance accounting for precipitation, evapotranspiration (Turc, 1955) and
potential infiltration based on a coefficient (CIP; Celico, 1988). Turc’s law for the real evapotranspiration (ET, mm)
considers that:

ET ¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9þ P2

L2

�r (13)

where P is the annual mean precipitation (mm) and L¼ 300þ 25Tþ 0.05T3, with T (�C) being the annual mean temperature.
At this point effective precipitation (Peff), generating runoff and infiltration, is calculated as:

Peff ¼ P � ET (14)

Concerning precipitation and temperature datasets, the annual averages calculated from the interpolated weather station
data were used, considering the entire temporal interval of 10 years ending at the reference periods of simulation, in order to
account for two mean climatic years (one for the early nineties and one for the actual period).

Then CIP was codified (Celico, 1988) according to the permeability attribute contained in the geolithologic map (Table 4)
where, under the field ‘code’, classes from 1 to 4 indicate an increasing degree of permeability, whereas ‘f’ indicates
permeability by cracking, ‘c’ is the permeability by karstification and ‘p’ represents permeability by porosity.

As model output, maps showing the extension of the intrusion were produced, using indices to specify the
underground conditions: 0.5 indicates that below a given point there is fresh water, 0.75 was used for mixed water
(i.e. the interface), 1 for salt water and 0 for a non-coastal aquifer (i.e. not interested by the simulated phenomenon).

In this application, the model, written in FORTRAN 90/95, was adapted to GIS formats. All the input data, such as geometry
and hydrodynamic attributes of aquifers (grid layers) or well location, depth and pumping rate (point layers), were managed
directly in the GIS environment in order to create only grids necessary for the model. This is a simply tight coupling, as the
model is stand-alone, but it reads input and writes output data in GIS formats.
Table 4
Potential Infiltration Coefficient (CIP) used to calculate natural recharge in SHARP, codified (Celico, 1988) according to the permeability map of Sardinia.

Code Lithologic types CIP

4f Argillite, clayey/schist, schist, marl, serpentine 0.15
4p Clay 0.10
4pf Schist and marl with arenaceous and calcareous levels 0.20
3p Moraine, lacustrine deposit, clay and sandy clay 0.30
3f Gneiss, granite, gabbro, quartzite, marly limestone 0.40
3fc Limestone and dolomitic limestone with marly intercalation 0.50
3pf Flysch, sandstone, granite, altered granite, syenite 0.50
2p Fine sand, silt, conglomerate, incoherent molasse 0.60
2f Volcanic rock, compact limestone 0.70
2pf Conglomerate and alluvium more or less cemented, travertine, little cemented sandstone 0.80
2fc Dolomite and dolomitic limestone 0.80
1p Alluvial deposits with prevalent sand and silt, debris flow, conoids, beaches and dunes 0.90
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Integrated Desertification Index (IDI)
The final phase of the proposed method consisted of deriving an Integrated Desertification Index (IDI) (Santini, 2008)

assuming that:

(i) both assessment of actual state of degradation and changes to the degradation over time are important: here the use of
just two time periods was constrained by their input data availability and suitability;

(ii) the simulated degradation processes have different significance in favouring the comprehensive land deterioration in
the island;

(iii) the quality (e.g. the level of subjectivity, the systematic or random errors in acquisition or digitalization, the employment
of assessed algorithm for interpolation or more or less sophisticated pre-processing procedures) and the resolution
(spatial detail) of the thematic input dataset are not homogeneous over the time scale of analysis and this has to be
accounted for in evaluating the changes from the past to the present;

(iv) the gradual increase of a single index of degradation should be reflected in an accelerated increase of the IDI values: in
effect there are often unknown or hidden dynamics for which degradation processes, when worsening, reinforce each
other.

The output grids from CENTURY, MOD17, RUSLE and WEAM models containing continuous quantities were normalized
choosing threshold values for each model: beyond such a threshold one can assume degraded conditions for the specific
process simulated by the model. Within the different model outputs, alternative thresholds were chosen on a land use basis:
e.g. it is evident that the same amount of soil loss for erosion has a different meaning when it occurs in agricultural areas than
in forest areas; and similar assumptions are valid for the other processes. This is a way to account for risk and not simply the
vulnerability (e.g. Al-Adamat et al., 2003).

In order to use the same scale of values than for CAIA and SHARP models, the normalized quantities were thus stretched
between 0 (representing the finest conditions) and 1 (representing fully degraded conditions). Any index from 0 to 1 was
assumed as the ‘degradation index’ for the corresponding simulated process.

The proposed IDI relationship calculated the arithmetic mean of weighted exponential functions of above degradation
indices and of their variation from the past, applying weights according to both the importance of the single process and the
quality of input data used in its simulation. The formula to derive IDI was the following:

IDI ¼ 1
N

XN

i¼1

"
ePDIDi

,DIDi

e
,
ePIDi

,IDi

e

#
(15)

where N is the number of considered processes, i represents the single process, IDi represents the degradation index of the ith
process for the present and DIDi indicates the variation from the past of the ith degradation index. Finally PIDi is the weight
assigned to the process i, whereas PDIDi is the weight assigned to the variation of the index i between the two considered
periods. The weights for the different land degradation processes must range from 0 to 1. In this study, they were chosen
combining: (a) local research institutes analysis and technical offices plus information from the relevant literature (Aru, 1986;
Costantini et al., 2004; Motroni et al., 2009) and (b) the difference in input data detail and quality for the different models and
for the different time periods (see Table 1).

To address the first issue, the Analytic Hierarchy Process (AHP; Saaty, 1977) was selected as the most appropriate method
for deriving the weight assigned to each factor. For the second point, a statistical analysis (i.e. Principal Component Analysis,
PCA) was conducted taking into account two sets of data: (i) the output maps of the six models separately for each year; (ii)
the two (past and present period) output maps, separately for each model. By cross-analysing, the results from AHP and PCA
the weights reported in Table 5 were selected as the most suitable.

The IDI was then classified into five classes of increasing by severity (Table 6), discriminated applying a natural break
algorithm. This identifies break points by choosing the class divisions which best group similar values and maximize the
Table 5
Weights and variations of the indices used in IDI calculation.

Model output and variations Weights

CAIA 1.00
Variation CAIA 0.25
RUSLE 1.00
Variation RUSLE 0.25
MOD17 0.80
Variation MOD17 0.20
CENTURY 0.60
Variation CENTURY 0.15
WEAM 0.40
Variation WEAM 0.10
SHARP 0.20
Variation SHARP 0.05
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Table 6
Range of value and description of IDI risk classes.

Risk Class Range of IDI values

Very Low (not subjected areas) 0.00–0.15
Low (potential areas) 0.15–0.30
Medium (fragile areas) 0.30–0.50
High (critical areas) 0.50–0.70
Very high (degraded areas) 0.70–1.00
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differences between classes. Recalling the class description for desertification sensitivity from Kosmas et al. (1999), the very
low risk class (1, i.e. Not Subjected Areas) represents areas where the critical factors are very low or absent, with a good
equilibrium between environmental and socio-economic components. The low risk class (2, i.e. Potential Areas) indicates
areas menaced by desertification if poor land management practices are applied or when the influence of adjacent degraded
areas causes severe problems: abandoned lands not properly managed could be included. The medium risk class (3, i.e. Fragile
Areas) represents areas where any change in the delicate equilibrium between the natural environment and human activities
can lead to desertification. The high risk class (4, i.e. Critical Areas) corresponds to degraded lands characterized by
a precarious equilibrium between the natural environment and human activities. Finally very high risk class (5, i.e. Degraded
Areas) represents areas already seriously degraded because of past poor management, representing a menace for surrounding
areas or with evident desertification processes.

Software design

The framework based on the IDI methodology was designed featuring two main characteristics:

- flexibility, as it allows possibility either to substitute a model simulating a given environmental degradation process with
another one according to the study area, or to work at different spatial scales and resolutions;

- user-friendliness, it contains a straightforward dialog box driving the non-GIS expert users step by step in input data
adding.

The computing made through the IDI tool can be ideally grouped into five sub-modules representing the framework
followed by implementing the integrated index (Fig. 3).

� INPUT DATA module: it controls the input data setting, including the definition of land use layers to be used for normal-
ization procedure;

� NORMALIZE module (only for RUSLE, WEAM, CENTURY and MOD17 models): it controls all the statistical operations on
a land use basis in order to derive a threshold critical value to normalize the model results on a scale from 0 to 1. This
permits to obtain all the required unitless degradation indices for the IDI formula (in addition to SHARP and CAIA results
which are already dimensionless).

� DIFFERENCE module: it calculates the differences between the indices of the two periods of simulation for each degradation
process;

� IDI CALCULATION module: the whole Eq. (15) is applied in order to derive the integrated desertification index stretched
between 0 and 1, representing the lowest and the highest conditions of risk, respectively. This module requires the weights
to be given to each degradation process and to its index variation.

� CLASSIFY module: the IDI is classified into severity levels as shown in Table 6.

The program was designed to be integrated into ArcGIS.9.x using an add-on toolbar developed by combining ArcObject
and Visual Basic programming languages. This tool supports step by step the end-user through the IDI application providing
a user-friendly interface. The tool consists of two main steps (windows): the first one allows selecting or updating the input
parameters, defining the geographic area of interest and deciding whether to calculate the classified IDI or simply the
normalized outputs for all the models. The second window allows for setting relative weights for single indices and their
variation (PIDi and PDIDi in Eq. (15)), and to choose the output grid name.

Results and discussion

The entire simulation experiment took less than 24 h to complete: the characteristics of the computer used in this
application are listed in Appendix A.

Considering the different possibilities of integrating modelling and GIS, the level of coupling, influenced by the
complexity of the model, impacted on the time required by the single model simulation Level of coupling and
complexity of the model impact on the time required by the single model simulations, and need to be considered when
integrating modelling and GIS. WEAM took the longest simulation time and had the highest impact on the internal
Please cite this article in press as: Santini, M., et al., A multi-component GIS framework for desertification risk assessment by an
integrated index, Applied Geography (2009), doi:10.1016/j.apgeog.2009.11.003
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Fig. 3. Flowchart representing the scheme followed to implement IDI through sub-modules. CA, S, R, W, CE, M stand for CAIA, SHARP, RUSLE, WEAM, CENTURY
and MOD17 outputs, respectively; LU indicates the land use layer; subscripts ‘‘A’’ and ‘‘P’’ indicate actual and past periods of simulation, respectively, while
underlines indicate normalized outputs. Finally, ‘D’ prefix represents the variation of indexes between two reference periods.
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resource of the processor as it processes daily climatic data and calculates numerically two integrations, one for the
diameter interval of saltating particles and one for the diameter interval of suspended ones. The CENTURY model, due to
the complexity of processes that it simulates, required a long processing time as well. RUSLE has proven to be a fast
model, showing that the longest computing time is required by the flow routing algorithm that connects cells from the
watershed boundaries to the outlet of each basin to calculate the LS factor. SHARP ran separately for the ten small
coastal aquifers considered to be affected by seawater intrusion, therefore, despite the complex physical processes that it
simulates the run was somewhat fast. Finally CAIA and MOD17, consisting of an overlay (summing and/or multiplying) of
vector or grid layers exploiting the GIS utilities, showed to be the fastest models. From the evaluations above, it is
possible to confirm that a loose coupling was the best solution for the more advanced applications (i.e. CENTURY). In the
case of relatively simple models, a simply tight integration with GIS (i.e. RUSLE, WEAM, SHARP) or a fully tight integration
within GIS (i.e., MOD17, CAIA) is recommended, as these applications are easier to develop and allow a quick data
combination and interpretation.
Please cite this article in press as: Santini, M., et al., A multi-component GIS framework for desertification risk assessment by an
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Fig. 4. Spatial distribution of areas at high and very high desertification risk, considered as hot-spots of desertification.
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Regarding the IDI, despite the significant dimensionality of the case study, which consisted in a grid of the order of 107

pixels at 50 m of resolution, the running time was contained (taking up to 50 min to complete). This provided the possibility
for multiple tests of IDI results against different weighting parameters.

From the classified IDI output map, referring to the hot-spot classification by LADA (Land Degradation Assessment in
Drylands, http://www.fao.org/nr/lada/), two types of hot-spot were considered:

- areas with high productivity seriously menaced by degradation (class 4, high risk hot-spots);
- degraded areas menacing surrounding areas (class 5, very high risk hot-spots).

Fig. 4 shows three clusters of very high risk hot-spots, surrounded by more scattered high risk hot-spots, and located in the
extreme north-western, north-eastern and centre-southern part of the island, respectively.

Table 7 shows that about 16.4% of territory is occupied by such hot-spots. In addition, classifying the land use map into four
broad categories: forest lands, agricultural lands, pasturelands and other lands, where ‘pasture land’ includes all areas used
for grazing (this was assessed by aerial image interpretation), hot-spot areas emerged as occupying 7.7% of forested lands, 8.1%
of agricultural lands, 18.2% of pasture lands and only 5% of other lands (mainly comprising coastal sandy or bare rock areas,
which can be defined as ‘naturally’ desertified). This is further proof of the interaction between grazing and low vegetation
cover predisposing the territory to further degradation processes (e.g. erosion).

At first evaluation, results of classified IDI were verified by conducting field survey campaigns during two different
seasons, in December 2006 and in May 2007. The validation points were selected according to their accessibility, to the
suggestions by local experts and to the primary results of the desertification risk assessment.

The survey, primarily performed along the hot-spot areas of Fig. 4, showed a good agreement with the classified IDI
outcomes (Table 8). The general landscape conditions during the survey trip (black line in Fig. 5) were observed, while in
selected sites (white circles in Fig. 5) a more in-depth examination was carried out, by analysing throughout the plot
mainly macroscopic soil, vegetation state, and land management practices. This was then documented by photographs
included in the validation database. Specifically 14 of 24 surveyed sites confirmed as critical areas, showing clear signs of
degradation due to either the lack of vegetation cover due to consumption by grazing, or the reduction of soil thickness
because of compaction by grazing followed by soil removal for erosion. Then 8 of 24 site points were confirmed as having
no signs of degradation, while 2 areas showed an example of amelioration procedures applied on formerly degraded areas.
Please cite this article in press as: Santini, M., et al., A multi-component GIS framework for desertification risk assessment by an
integrated index, Applied Geography (2009), doi:10.1016/j.apgeog.2009.11.003

http://www.fao.org/nr/lada/


Table 7
Area (Ha and %) of each hot-spot type derived from IDI for the whole study area and land use category.

Domain Hot-spots 4 (Ha) Hot-spots 5 (Ha) Hot-spot 4 (%) Hot-spot 5 (%) Total (%)

Whole area 3580994 350850 14.90 1.49 16.39
Agricultural land 110512 925 7.50 0.60 8.10
Forest land 310897 20763 7.10 0.60 7.70
Pasture land 2860099 260436 16.70 1.50 18.20
Other 100536 10872 4.20 0.80 5.00
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Both were well detected by classified IDI and confirmed by local land managers. In this case, it was concluded that in 90%
of cases the ground-truth matched with the IDI assessment. This was just a first evaluation of model performances and
constrained by the accessibility of sites. Moreover, it was not easy to distinguish during field observation between the two
types of hot-spots without specific and more in-depth soil, vegetation and land productivity analyses able to verify the
single IDI components.

Field inspections reinforced the hypothesis that overgrazing and soil erosion are the most important factors affecting the
desertification process in the study area, supporting the choices made in weighting the different degradation processes. Fig. 6
shows an example of such severe situation for the Irgoli’s territory (north-eastern sector), where above described features are
evidently leading to degraded conditions and manifest as incise channels with considerable soil removal until bedrock
outcropping. In general, degraded zones consist of wide sectors comprising early signs of worsening also in the portion of the
territory not directly interested by the source of degradation (i.e. soil removing or vegetation cover reduction). This is due to
‘neighbouring’ interactions and off-site effects, e.g. grazing migration towards the borders of previously grazed lands or
burying of fertile soil by eroded sediment deposition.

A detailed study of the complex land cover dynamics in these areas suggests that the misuse and the abuse of existing
pastureland and the creation of new pastures on unsuitable marginal terrain favoured severe land degradation processes. The
Table 8
List of sites surveyed for validation purpose. Coordinates (decimal degrees) and class of risk derived from IDI application are reported together with
a description of the conditions as observed during the field survey.

SITE LONa LATa HAs Description

1 9.032 39.446 4 Agricultural area with several signs of rill incision
2 9.046 39.475 no Agricultural area without sign of degradation
3 9.053 39.511 5 Area lacking of vegetation cover, devoted to grazing, sloped and

with signs of grazing amelioration procedures
4 9.039 39.582 4 Agricultural areas surrounded by highly grazed area
5 8.920 39.567 no Signs of ploughing on gently sloped areas, deep soil without stoniness.

No degradation sign
6 8.959 39.598 no
7 9.025 39.635 4 Sloped ploughed areas with some signs of rill incisions.
8 8.931 39.656 no Signs of ploughing on gently sloped areas, deep soil without stoniness.

No degradation sign.
9 9.244 40.313 5 Steep area with alternation of sclerophyllous vegetation and bare/grass cover,

showing signs of irregular land-work often in the direction of slope for
pasture seeding, also signs of rill/sheet erosion.

10 9.456 40.419 4 Sparsely vegetated (shrubs) and very sloped areas with diffuse sign of
ploughing in the direction of slope, some sign of rill/sheet erosion.

11 9.467 40.461 4
12 9.654 40.454 4 Land interested by grazing, with sparse or low vegetation (shrubs),

degraded soil with high stoniness, with deep incision due to rill
erosion, up to outcropping of mother rock.

13 9.693 40.476 5
14 9.704 40.480 4
15 8.670 40.533 4 Areas devoted to grazing and intensive and extensive agriculture.

Many signs of soil instability and degradation
16 8.628 40.600 4
17 8.563 40.607 5
18 8.485 40.660 4
19 8.471 40.743 no Agricultural land, with gently slope, without signs of degradation
20 8.639 40.741 no
21 8.289 40.746 no
22 8.194 40.735 4 Agricultural areas also devoted to grazing, with medium slope.

With signs of degradation.
23 8.204 40.781 4 Agricultural areas also devoted to intense grazing, with high slope.

With signs of degradation.
24 8.243 40.831 no Agricultural areas also devoted to grazing, with medium slope.

With signs of degradation.

a coordinates are in decimal degrees.
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Fig. 5. Map showing field survey points (white circles), road track (black line) and indication location (white outlined box) of the sector described in Fig. 6.
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agro-pastoral practices, including tillage and fires, are frequently carried out along the maximum slope gradient regardless of
morphological and soil conditions and often just before rainy periods (Enne, Pulina et al., 2000). Given the loss of vegetation
cover and increased of soil erodibility due to these practices, erosion processes become widespread and intense (D’Angelo
et al., 2000; Zucca et al., 2006).

Although there is good correspondence between IDI results and field verification, at this time the mesoscale of the
application at fine spatial resolution limits the possibility of extensive validation. However, as in other vulnerability/risk hot-
spots analyses, such a scale represents the first step of a more comprehensive ‘top-down/bottom-up’ procedure, serving to
individuate the most critical situations where more detailed analyses are necessary to upscale the results. A preliminary
coarse scale evaluation allows evaluating differences in exposure and sensitivity; for the most severe situations a finer
resolution could be useful to resolve local features. Finally, a ‘regionalization’ procedure can improve previous coarser scale
evaluations (Venevsky, 2006).

It is noteworthy that the two largest hot-spot areas (north-west and centre-south) appear to confirm two large critical
sectors detected by previous work performed at the regional level (Motroni et al., 2009) and carried out via the Environmental
Sensitive Area (ESA) methodology of Kosmas et al. (1999), based on static indicators and calibrated over the Sardinian case
study. Such work was completed for about 68% of the island territory at scale 1:100 000 and, if compared with either classified
IDI results or field survey, shows an evident overestimation of the risk.

It is difficult to compare the ESA-based work with IDI results because of divergence between initial assumptions and final
interpretation, unless trying to harmonize inputs and outputs.

A more coherent evaluation between the ESA and IDI methods for such an area was conducted by fine-tuning the IDI in
order to compare it to the formulation of the ESA approach. To this aim: (i) only 4 degradation processes were considered
(overgrazing, vegetation productivity, soil productivity , water erosion) to meet indicators considered by ESA; (ii) only the
exponential factors of actual conditions were kept, fixing DIDi¼ 0 in Eq. 15; (iii) all the considered degradation factors were
Please cite this article in press as: Santini, M., et al., A multi-component GIS framework for desertification risk assessment by an
integrated index, Applied Geography (2009), doi:10.1016/j.apgeog.2009.11.003



Fig. 6. (Top) Aerial photograph over a surveyed location (Irgoli’s area, see white outlined box in Fig. 5) with hot-spot area boundary (white line) overlay: field
survey confirmed the area to be grazed with evident erosion signs (bottom left) leading to total loss of soil and outcropping of mother rock (bottom right).
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assumed having the same weight (i.e., PIDi¼ 1 in Eq. (15)). Such applications are referred to as simplified-IDI, to which the
classification in Table 6 was thus applied.

The ESA index, ranging from 1 to 1.85, was stretched between 0 and 1 and still classified according to Table 6
(reclassified-ESA), in order to match the scale and the ranking of the classified simplified-IDI. Table 9 shows, for the part of
territory covered by the ESA study, the percentage of area in which the two compared approaches differ for four, three,
two, one or no class of risk. Also this suggests where the reclassified-ESA overestimates (positive differences) or under-
estimates (negative differences) if compared with the classified simplified-IDI. About 41% and 88% of the sample presents
a perfect and a good agreement, respectively, where ‘good’ means there is maximum one class of difference between the
two indices.
Table 9
Percentages showing the differences between reclassified-ESA and classified simplified-IDI desertification risk class values, after harmonization of accounted
processes and evaluation scales, over the area extent investigated by Motroni et al. (2009).

Class difference % of Area

�4 0.00
�3 0.21
�2 3.79
�1 20.70
0 41.22
1 25.74
2 7.25
3 1.04
4 0.05
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The possibility for IDI to include additional processes, appropriate weights for the different processes, and the rate of
degradation worsening from the past is obviously an added value if compared with the previous approach.

Conclusions

Desertification affects different types of environments and is a complex issue involving interrelated factors from both
environmental and anthropogenic systems (e.g. Adamo & Crews-Meyer, 2006). Thus any decision focusing on desertification
impact mitigation and prevention requires deep research about the characteristics of the area under analysis. The IDI tool,
whose formulation and software structure are here presented, is an innovative tool satisfying the need to not only detect
degraded areas, but also to understand for which of these areas interventions are more urgent. IDI integrates results of various
types of models, simulating environmental processes, with GIS, using different degrees of coupling strength, balancing model
sophistication and complexity. In particular, this tool allows the production of desertification risk maps in a manner that is
both easily read and repeated for non expert GIS-user (e.g. Cinderby & Forrester, 2005).

The first application of the methodology to the Sardinia Island case study appeared promising. The field assessment
confirmed good correspondence between the ground-truth conditions and the desertification risk map, with the simulated
hot-spot areas showing clear signs of degradation when identified in the field. These results point out that IDI is an efficient
regional scale tool for detecting areas at risk and taking political actions to mitigate and prevent land degradation processes
from triggering desertification. Regional scale mapping of areas at risk represents the initial step towards detecting sites
where more refined investigations and urgent interventions are needed (e.g. Li, Peterson, Liu, & Qian, 2001), and allocating
the required resources.

Unlike the application described, the use of alternative models is possible when the processes driving desertification in
another territory are different, or when the available input datasets for the selected modelling scheme are limited. It is
possible to apply the methodology at different spatial levels according to the extent of the study area, deciding on the most
representative processes to model according to the scale. Variations in specific process weights allows several classified IDI
maps to be quickly produced, compared and verified, also predicting different desertification impacts. This helps decision
makers to develop suitable land management policies from a range of alternatives in order to mitigate adverse effects.

The tool can be further improved by supplying the models with a more complete dataset following increased production
and availability of thematic maps. This is also useful for validation stage, supporting the advances in desertification assess-
ment procedures.
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Appendix A.

Technical characteristics of the computer used for the simulation.

- Dell Precision PWS 380.
- Hard Disk: 150 GB.
- RAM: 2 GB.
- MultiProcessor: (2) Intel Pentium IV 3.00 GHz.
- OS: Windows XP Professional SP2.
- Ethernet Card: Broadcom NetXtreme 57xx Gigabit Controller.
- LAN: 1 Gbps.
- Controller SCSI: Intel 82801 GR/GH SATA RAID Controller.
- VGA Card: NVIDIA Quadro NVS 285.
- Paging: 4 GB.
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