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Aboveground biomass assessment in Colombia: A remote sensing approach
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A B S T R A C T

This paper presents a method to increase the level of detail of aboveground biomass estimates at a

regional scale. Methods are based on empirical relationships while materials are based on MODIS

products and field measurements; the area covers from 48 south up to 128 north of the Equator with a

total of 1,139,012 km2 corresponding to the continental area of Colombia. Vegetation was classified in

three broad classes: grasslands, secondary forests and primary forests which have been proved to

enhance biomass estimates. MOD44 vegetation continuous fields (VCFs) was used as an explanatory

variable for primary and secondary forests following an exponential relationship, while MOD13A1

enhanced vegetation index (EVI) was used as explanatory variable for grasslands following a linear

relationship; biomass for this vegetation class was estimated every 16 days given its large variation

throughout the year. EVI–biomass relationships were established from 2001 to 2006. Vegetation maps

were used to separate primary forests from secondary forest, since the latter has shown lower biomass

levels. Confidence intervals of the exponential regression are larger as the biomass values increases, for

this reason the uncertainty is quite high ranging from 3.7 to 25.2 millions of Mg with a mean of 16.2

million of Mg. Despite the uncertainty our biomass results are within the estimates of previous studies.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Dry aboveground biomass (AGB) studies are important to
determine biosphere–atmosphere interactions. Existing biomass
stocks are considered a carbon sink while biomass burning is
considered a source of atmospheric carbon. The last report of the
Intergovernmental Panel on Climate Change has outlined the
importance to determine a base line for organic carbon. This
protocol has valuated the carbon as a producer good and the net
primary productivity as a resource of future economical benefits
(Cihlar, 2007). This requires developing scientific methods to
delineate biomass distribution at scales from local and regional to
global with their respective uncertainty (Moutiño and Schwartz-
man, 2005; Herold et al., 2006; DeFries et al., 2007; Gibbs et al.,
2007; Pearson et al., 2008). However, estimates of carbon sinks
have shown a particularly large degree of uncertainty (Houghton
et al., 2001; Achard et al., 2004; Hese et al., 2005).

There are different methods to approach regional biomass
estimates for forests: field measurements (inventories), patterns of
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greenness derived from vegetation indexes, vegetation models
simulating the global carbon cycle, e.g. CASA (van der Werf et al.,
2006), and tree cover data sets combined with potential biomass
density. In the case of herbaceous mean annual precipitation and
climatic indexes are commonly used.

Regional studies of biomass estimation could be classified in
three vegetation groups: grasslands, secondary forests and
primary forests. This classification of biomass reduces the
uncertainties in estimations since there is a large relationship
between structure and ecosystem dynamics (Keeling and Phillips,
2007). In the case of grasslands, AGB changes rapidly especially
when subject to grazing and is highly related to precipitation
(Menaut et al., 1991; Privette et al., 2002; Baruch, 2005; Scanlon
et al., 2005; San José and Montes, 2007). On the other hand AGB in
secondary forest is only of importance when considered at the
inter-annual basis. Sierra et al. (2007) estimated an AGB in
secondary forest of 46 Mg/ha increasing up to 249 Mg/ha in
approximately 50 years. Finally, primary forests AGB increments
are insignificant since potential biomass equals real biomass
(Scheller and Mladenoff, 2004). For this reason primary forests are
considered important carbon pool but without the capacity of
increasing additional AGB.

Ground-based quantification methods of AGB are destructive
(harvest and weighing) being more complex for forest than for
grasslands. In the case of forests it is required to fell trees, palms
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and vines, oven-dry large volumes of material and weight several
Mg of trunks, roots, branches and leaves from the overstory and
understory individuals.

As a mean to facilitate this process allometric equations are
generated from direct measurements. These equations have
biomass as the dependent variable and height, diameter at breast
height (DBH) and wood density as the independent variables.
Height and diameter are easily measured in the field while density
is usually measured at a laboratory based on volume and dry
weight of wood samples. Malhi et al. (2006) and Nogueira et al.
(2008) discussed the effect of basal area and wood density spatial
distribution on the overall biomass estimates at the Brazilian
Amazonia.

Another vegetation type of great interest at the study area is the
tropical savanna, not only for the large extensions it covers but also
for the high inter-annual biomass dynamics. Colombia has two
large savanna formations, to the north along the Magdalena River
and to the east along the tributaries of the Orinoco River. The latter;
is the most important and is known as Llanos Orientales. Relevant
studies have been made in this area by several authors (Jimenez
et al., 1998; Rippstein et al., 2001; San José and Montes, 2007).
Savanna formations are related to climates with low precipitation
seasons, fire occurrence, and grazing. Both, Rippstein et al. (2001)
in Colombia and Scurlock et al. (2003) in Venezuela have
determined biomass with a maximum around 3–4 Mg/ha without
fertilization treatments. From these studies it can be drawn that
phenologic changes of the Llanos are closely related to rainy
seasons. As a matter of fact, the amount of rainfall during the
growing season has been found to be the best single predictor of
grasslands aboveground net primary productivity (Nippert et al.,
2006; Wessels et al., 2006).

Remote sensing is the best approach to estimate biomass at a
regional level where field data is scarce. Almost two decades have
passed since the pioneers like Sader et al. (1989) related biomass to
reflectance. Since then, several studies in different regions have
found strong correlations between biomass and reflectance at
different wavelengths: in India (Roy and Ravan, 1996), in Bolivia
and Brazil (Steininger, 2000), in Malaysia (Phua and Saito, 2003), in
Eastern Brazil (Lu et al., 2004), and in Wisconsin, USA (Zheng et al.,
2004). Other studies have used a measure of greenness or
cumulative greenness as a means to estimate biomass. Greenness
is based on reflectance bands and calculated using vegetation
index equations like the normalized difference vegetation index
(NDVI) in Eq. (1) or the enhanced vegetation index (EVI) in Eq. (2).
The cumulative greenness is the sum over a period of time of
vegetation index values, usually representing a phenological stage
like the growing season (Myneni et al., 2001; Dong et al., 2003; Lu
et al., 2004; Wessels et al., 2006).

NDVI ¼ rNIR � rR

rNIR þ rR

(1)

where NDVI is the normalized difference vegetation index.

EVI ¼ G
rNIR � rR

ðrNIR þ C1 rR � C2 rB þ LÞ

� �
(2)

where EVI is the enhanced vegetation index; C1 = 6.0, atmosphere
resistance red correction coefficient; C2 = 7.5, atmosphere resis-
tance blue correction coefficient; L = 1.0, canopy background
brightness correction factor; G = 2.5, gain factor.

Huete et al. (1997) analyzed several indexes (NDVI, SAVI, EVI
and the ratio NIR/Red) in order to determine biomass estimation
accuracy at different leaf canopy densities. These indexes are built
upon reflectance values of near infrared (rNIR), red (rR) and blue
(rB) that might be calculated with any sensor (vegetation, ETM+,
MODIS), except for EVI which is calibrated exclusively for MODIS
data. Huete et al. (1997, 2002) found that the NDVI saturated in
high biomass regions like the Amazon while the EVI was sensitive
to canopy variations.

There are two drawbacks of biomass estimation using remote
sensing: field plots are rarely designed to be related to spaceborne
data and saturation at dense leaf canopies restricts estimates to
low biomass levels when passive sensor data is used. Biomass is a
three-dimension feature of vegetation and has been estimated
using popular optical sensors like Landsat or Spot. However, the
ability of these sensors is limited to two dimensions only, i.e. the
upper layers of vegetation. Steininger (2000) found that the canopy
reflectance–biomass relationship saturated at around 150 Mg/ha
or over 15 years of age. These drawbacks result in large
uncertainties and the methods that are used may not generalize
accurately in space and time (Foody et al., 2003). Houghton et al.
(2001) found that AGB, belowground biomass and necromass for
large geographic extensions like the Brazilian Amazon vary from
the lowest estimates of 78 billion Mg up to the highest of 186
billion Mg.

Another approach to biomass estimates using remote sensing
applications are based on canopy density (Suganuma et al., 2006)
which is represented by tree cover percentage maps. The main
advantage of tree cover percentage maps over traditional maps of
discrete classifications is to represent the internal variability of
vegetation distribution. Two maps of proportional per pixel tree
cover estimates, or continuous field of percent tree cover, have
been published at a global scale, the AVHRR tree cover (DeFries
et al., 2000) and the MODIS VCF, with spatial resolutions of 1 km
and 500 m, respectively. The 500-m MODIS VCF represents the
amount of skylight obstructed by tree canopies equal or greater
than 5 m in height (Hansen et al., 2003a), and was estimated using
metrics from the seven MODIS bands, NDVI and AVHRR brightness
temperature. Hansen et al. (2003a) found that increasing canopy
density is correlated with lower red reflectance values due to
shadowing and chlorophyll absorption. More recently, Saatchi
et al. (2007) used a series of metrics including vegetation indexes,
leaf area index and percent tree cover maps to determine the
distribution of aboveground live biomass in the Amazon basin,
they calculated a total of 86 Pg C with a 20% uncertainty of total
carbon in forest biomass.

State of the art of biomass estimates using remote sensing is
based on LiDAR data (light detection and ranging), designed to
allow the penetration of the signal through the canopy. During the
last 10 years there is a growing interest for airborne and
spaceborne LiDAR in order to estimate biomass (Lefsky et al.,
1999; Drake et al., 2002; Patenaude et al., 2004; Hese et al., 2005;
Lefsky et al., 2005). Successful spaceborne LIDAR has not yet been
implemented, but allows measuring forest height and deriving its
profile or vertical structure. This active sensor is, by far, the best
option to estimate biomass at a local scale. Radar data has also been
used to estimate biomass, Quiñones (2002) has a well documented
discussion of the best radar bands to estimate AGB in the
Colombian Amazon.

No active sensors data was available for this study, and thus
LIDAR and radar data were disregarded. Medium and high spatial
resolution images were also disregarded, since the spatial extent
and temporal availability was insufficient. High temporal resolu-
tion was required not only to follow biomass trends but also to
obtain pixels as free of clouds as possible. MODIS products were
selected from the spaceborne available data, this program offers
adequate temporal resolution with an appropriate spatial resolu-
tion to describe vegetation distribution at a national level.
Additionally, MODIS products have a robust validation assessment
per pixel which allows both, reducing noise and eliminating clouds
when building composites.

Current nation’s agreements in a global context like the Kyoto
protocol require better estimates of biomass. The overall goal of
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this paper is to determine the spatial distribution of biomass in
Colombia. Previous studies in Colombia and cited in this document
are extremely detailed and covering a low percentage of local
vegetation. While, on the other hand, there are extremely general
studies at a national level with tabular data or pixels over 50 km
(Olson et al., 1985, 2003; FAO, 2006). Increasing the detail level in a
regional context allows understanding the processes affecting
biomass (logging, fire occurrence, road building) and to assess
current biomass sources and sinks. Remote sensing offers readily
available and updated information to estimate biomass at regional
level. The goals of this paper are: (i) model AGB as a function of VCF
maps or vegetation indexes; (ii) evaluate intra-annual biomass
trends for grasslands; (iii) provide AGB estimates for natural
regions in Colombia, and (iv) increase the spatial detail level of
previous biomass estimates.

2. Methods

2.1. Study area

Colombia is a tropical country in Northern South America with a
total area of 1,139,012 km2 and a large primary forest carbon pool.
Fig. 1. Five major biogeograp
Humid conditions and warm temperatures promote fast vegeta-
tion regeneration at low lands in most of the country. Climate is
driven by the intertropical convergence zone (ITCZ), although
there is also a fair amount of moisture coming from the Pacific
Ocean that raises along the western Andes resulting in annual
precipitations over 8000 mm. Colombia has been divided in five
natural regions (Fig. 1): Amazon, which contains the largest carbon
pool; Orinoquı́a, characterized by savannas and large inter-annual
fire occurrence; Andes, with the most threatened forests and
intensive agricultural activity; Pacific, the second carbon pool of
the country, highly deforested due to the presence of rivers and
coasts; finally, the Caribbean region, having large formations of
savannas and the driest region of the country, this region also has
the highest Colombian snow peak at the Sierra Nevada de Santa
Marta above 6000 m above sea level. The Andean and Caribbean
regions present the largest conversion from forest to agriculture
(Etter et al., 2006).

2.2. Remote sensing data

The Moderate Resolution Imaging Spectroradiometer was
launched on board Terra satellite in 1999 followed by Aqua
hic regions of Colombia.



Table 1
Biomass field data.

X Y Vegetation type Biomasa (Mg/ha) Reference

718180W 48340N Grassland 0.60 Rippstein et al. (2001)

718160W 48280N Grassland 1.00 Rippstein et al. (2001)

75840W 68460N Grassland 3.00 Orrego and Del Valle (2001)

75880W 68510N Grassland 3.00 Orrego and Del Valle (2001)

718190W 48280N Grassland 5.00 Rippstein et al. (2001)

75880W 68480N Grassland 6.00 Orrego and Del Valle (2001)

75850W 68460N Grassland 8.00 Orrego and Del Valle (2001)

678250W 88590N Grassland 3.20 San Jose and Montes (1998)

728330W 28240N Grassland 10.00 Quiñones (2002)

75890W 68490N Secondary forest 11.00 Orrego and Del Valle (2001)

748210W 68170N Secondary forest 24.00 Benitez and Serna (2004)

75860W 68450N Secondary forest 26.00 Orrego and Del Valle (2001)

75870W 68430N Secondary forest 30.00 Orrego and Del Valle (2001)

75890W 68480N Secondary forest 31.00 Orrego and Del Valle (2001)

75860W 68450N Secondary forest 32.00 Orrego and Del Valle (2001)

75880W 68470N Secondary forest 35.00 Orrego and Del Valle (2001)

75880W 68460N Secondary forest 50.00 Orrego and Del Valle (2001)

748180W 68250N Secondary forest 68.00 Benitez and Serna (2004)

75840W 68460N Secondary forest 82.00 Orrego and Del Valle (2001)

75850W 68450N Secondary forest 86.00 Orrego and Del Valle (2001)

758320W 6830N Secondary forest 87.00 CORNARE (2002)

75870W 68470N Primary forest 98.00 Orrego and Del Valle (2001)

66800W 98590N Primary forest 140.00 Houghton et al. (2001)

75860W 68440N Primary forest 154.00 Orrego and Del Valle (2001)

778170W 48330N Primary forest 194.00 Lovelock et al. (2005)

77800W 38550N Primary forest 195.00 Houghton et al. (2001)

758340W 6820N Primary forest 217.00 CORNARE (2002)

67840W 18580N Primary forest 218.00 Saldarriaga et al. (1998)

67830W 18550N Primary forest 221.00 Houghton et al. (2001)

75880W 68500N Primary forest 239.00 Orrego and Del Valle (2001)

738550W 68490N Primary forest 252.00 Houghton et al. (2001)

748210W 68230N Primary forest 257.00 Benitez and Serna (2004)

67820W 18580N Primary forest 264.00 Saldarriaga et al. (1998)

67890W 18490N Primary forest 271.00 Saldarriaga et al. (1998)

70800W 98300N Primary forest 296.0 Houghton et al. (2001)

728320W 28250N Primary forest 297.00 Quiñones (2002)

75860W 68450N Primary forest 298.00 Orrego and Del Valle (2001)

708520W 108230N Primary forest 314.00 Houghton et al. (2001)

738320W 68240N Primary forest 325.81 DAAC (2002)

67870W 18530N Primary forest 326.00 Saldarriaga et al. (1998)

728100W 08390S Primary forest 343.00 Houghton et al. (2001)

78870W 88450N Primary forest 397.00 DAAC (2002)
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satellite in 2002. Both satellites are part of the Earth Observing
System of NASA. The goal of this program is to provide a series of
global atmosphere, oceans and land http://modis.gsfc.nasa.gov/.
This sensor has 36 channels in the optical and thermal domain with
resolutions of 250, 500 and 1000 m. The best of a series of
observations is selected within a time period at a certain location
(Mayaux et al., 2004; Schwarz et al., 2004). Time periods are
commonly 8 days or 16 days. The selected product for assessing
biomass is MOD13A1, a 16 days composite with 500 m spatial
resolution

A total of 828 tiles were processed to build 138 mosaics, each
covering the study area for a 16-day period. The 138 dates were
built upon six tiles (H10V07, H11V07, H10V08, H11V08, H10V09,
and H11V09) to complete the 2001–2006 time-series of satellite
data. MODIS tools (DAAC, 2004) were used to download, reproject,
mosaic and extract quality assessment values. A nearest neighbour
reprojection was used with a pixel size of 500 m. Low quality pixels
of composite (t) were replaced with the average value of adjacent
temporal composites t � 1 and t + 1, afterwards a directional low
pass filter with a 5 � 5 kernel size was applied to the temporal
domain of the 138 dates.

This helped to reduce time-series noise (atmospheric, residual
cloud and views). Original images were downloaded following
standard MODIS tiles and reprojected to UTM (zone 18N) using
WGS84 as a reference ellipsoid.

In order to describe biomass spatial distribution the VCF map, or
proportional tree cover estimate per pixel, MOD44B Collection 3
was also included. The map is available for download at http://
glcf.umiacs.umd.edu/data/vcf/ (Hansen et al., 2002, 2003b) and
includes three layers: tree, herbaceous/shrub and bare soil
percentages. The only layer used was the proportional tree cover,
from now on VCFt, and the other two layers were disregarded due
to the large multicollinearity. There are no means to build a time-
series out of this product since it is a single date map representing
the year 2001, but it is probably the best representation of
continuous vegetation distribution at a spatial resolution of 500 m.

Secondary forest and primary forest were discriminated with a
map of forests made by the Geographic Agustı́n Codazzi Insititute
(IGAC) (Hacienda-IGAC, 1985). This map of polygons was made
with expert’s knowledge using aerial photography and satellite
image interpretation and updated for this work using Landsat
images. The level of detail is 1:1:500,000 and the map have 24
categories. In addition to this, maps of precipitation were also used
to evaluate previous reported relationships between biomass and
precipitation (Nippert et al., 2006; Wessels et al., 2006). The TRMM
(tropical rainfall measurement mission) described by Kawanishi
et al. (2000) provides adequate spatial and temporal rainfall
information to follow the biomass intra-annual changes we want
to describe.

2.3. Field data

Biomass ground data for forests is based on allometric
relationships for each field plot with sizes varying from 0.01 up
to 0.1 h. There are large differences among measurements for
several reasons. Saldarriaga et al. (1998) found that biomass
measured at primary forest was four times larger than in secondary
forest. Large variations of biomass are also reported by Lovelock
et al. (2005) depending on the distance of trees to the shore in the
Panamá Mangroves. Edaphic, climatic, and orographic conditions
as well as specie composition are also known to influence biomass
values. On the other hand, pasture biomass varies according to
fertilization treatments, use, soils, and more important: intra-
annual precipitation pattern. Table 1 provides information of 44
field plots in Colombia, Panamá, and Venezuela including
vegetation types from pasture to primary forests. Ground-based
data and derived remote sensing data were related spatially
through plot coordinates at a pixel level in areas of homogeneous
vegetation coverage (Fig. 2).

2.4. Empirical models

There are no practical methods to measure all carbon stocks
across a country. However, ground based and remote sensing data
can be converted into national estimates using allometric relation-
ships (Gibbs et al., 2007). Here, we established empirical
relationships between all the plots and EVI or VCFt based on the
hypothesis that larger EVI or VCFt (canopy cover) values result in
larger biomass values. Several assumptions were made on the basis
of biomass distribution in space and time. First, primary forests are
in a steady state, i.e. these forests have reached its potential
biomass. Second, growth and extraction in secondary forests are in
balance. For these reasons, we assumed that primary and
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Fig. 2. Color composite of maximum, minimum and mean EVI values for the study period (2001–2006) and biomass field plots location.

Table 2
Biomass equations estimated for forests, R2 coefficient of determination, variable

significance and forest type.

AGB model (Mg/ha) R2 Sig. Forest type

4:3149 ðVCFtÞ � 80:202 0.82 0.000 Primary

1:6397 ðVCFtÞ � 76:006 0.55 0.009 Secondary

1:951� expð0:063� VCFtÞ 0.78 0.000 Primary

0:419� expð0:061� VCFtÞ 0.72 0.001 Secondary
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secondary forests have constant biomass during the study period.
Third, it is assumed that field plots are representative of a 25 ha
pure pixel values. Fourth, pasture biomass changes rapidly within a
year and the temporal resolution of 16 days composite data is
sufficient to depict these changes.

3. Results

3.1. Biomass model for primary and secondary forests

Linear and exponential models were fitted to the primary forests
and secondary forest with VCFt and EVI metrics as explanatory
variables (Table 2 and Fig. 3). The statistical significance of F value is
lower than 0.05 just in those equations were the VCFt term was
included, which means that the variation explained by the model is
not at random. However, the inclusion of the cumulated EVI or
maximum EVI reduces the significance level and for this reason was
discarded as explanatory variable. The linear model seems more
appropriate for the ground-data, however it predicts negative
biomass values when tree percentage is close to zero Eqs. (3) and (4).
On the other hand, the exponential model overestimate biomass at
the upper range with 1062 and 187 Mg/ha for primary forests Eq. (5)
and secondary forests Eq. (6). We consider the exponential model
more appropriate to describe biomass increase as the percentage of
tree percentage increases, the larger the VCFt value the larger the
probability of a pixel to belong to a forests with large AGB values (less
fragmented and less extraction levels). In order to avoid unrealistic
estimations we restricted the model to the maximum ground-based
value of 397 Mg/ha.

Residuals were calculated for the exponential model in order to
evaluate any systematic patterns along a fitted line between
measured and estimated values. In the case of secondary forest
there is a tendency to underestimate field values as VCFt value
increases, although more observations are required to confirm this
trend (Fig. 4).



Fig. 3. Linear and exponential models for primary and secondary forests. The dotted line represents the confidence interval at (90%).

Fig. 4. Validation plot for exponential models, measured and estimated biomass value. Primary forest (a) and secondary forest (b).
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3.2. Biomass model for savannas

As explained before pasture biomass values are highly variable
within a year and this variability must be modeled. In order to
model intra-annual variation we used field data elaborated by San
Fig. 5. Pastures productivity and EVI values at the Calabozo station (8.93N, 67.42W). (a) M

as a function of EVI and measured values for 3 different years.
Jose and Montes (1998) which were collected and made available
by Scurlock et al. (2003). This dataset has monthly biomass values
for pastures at El Calabozo Station (Llanos of Venezuela) and has
similar characteristics to the Llanos of Colombia and are
considered representative for the study area. The 16 days
OD13A1 EVI for 2004 and measured biomass values in 1986; (b) estimated biomass



Fig. 6. Biomass estimation flow chart based on VCFt (percent tree cover) and map of

forests.
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MOD13A1 EVI of the year 2004 was related to the changes
measured in the field during 3 years: 1969, 1986 and 1987. Despite
the temporal discrepancy between remote sensing data and field
data these results are useful in depicting the inter-annual biomass
variability (Fig. 5).

Here, it is important to note that this relationship is only valid
for pastures, i.e. 0% tree or bare soil. If an important amount of bare
soil is present EVI will be low and will result in negative biomass
values (which translates as no biomass), but on the other hand, if
the percentage of tree cover is different than zero a correction
factor must be applied to account for forest biomass. Eq. (7)
accounts for changes in pastures based on EVI but also include a
VCFt term that becomes more important as the percent tree cover
increases. This is particularly important at tree savanna forma-
tions.

AGB ¼ ð0:0014� EVI� 2:8911Þ � ð100� VCFtÞ=100

þ ð4:3149� ðVCFtÞ � 80:202Þ � VCFt=100 (7)

EVI is the enhanced vegetation index, scale factor 10,000.
Biomass values for the three vegetation classes are estimated

using Eqs. (5)–(7) and the stratification based on Fig. 6. The
distinction of classes was based on the distribution of VCF values
Fig. 7. Aboveground live biomass derived from
and the map of forests; both sources were used to benefit from the
structural information of the VCF and the vegetation interpretation
of the map of forests. The distribution of VCF values at the forest
class was defined as 40 < VCFt < 100 while the distribution of VCF
values for savannas was defined as 0 < VCFt < 40.

3.3. Biomass spatial distribution

Biomass distribution is determined as a surface with a pixel size
of 500 m (Fig. 7). In order to describe biomass spatial distribution,
information is aggregated using two different maps: map of forests
the relationship of VCFt, EVI and field data.



Table 4
Biomass distribution by region.

Region Area (km2) Average AGB (Mg/ha) Biomass (million of Mg)

Caribbean 110,014 19 209

Andes 306,010 54 1,652

Pacific 81,280 95 772

Orinoquı́a 202,618 37 749

Amazon 439,090 291 12,777

Total 1,139,012 16,160

Fig. 8. Tropical rainfall measurement mission and enhanced vegetation index time-

series from January 2001 to December 2006.

Table 3
Model statistics by vegetation class.

Area by vegetation class (km2)a Average AGB (Mg/ha) Confidence intervals 90% Biomass (million of Mg)

Primary forest 576,968 264 61–1246b 15,231

Secondary forest 78,899 35 12–81 276

Savannas 359,830 21 2–46 755

a Water bodies and bare soils are excluded.
b 397 Mg/ha was set as a maximum biomass value.
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(Table 3) and natural regions (Table 4). In the case of savannas each
date has different biomass values but an inter-annual average was
calculated. Primary forest accounts for 93.7% of the total biomass
while savannas and secondary forest accounts for only 6.3%. Total
secondary biomass is low mainly because the small fraction of this
vegetation type with respect to the total area. Most of the biomass
pools of the country are, by far, located at the Amazon region,
followed by the Pacific and Andes regions. The Amazon not only
has a large percentage of the country in terms of area but it also has
the largest biomass estimates. After the Amazon, the Pacific region
has a large carbon pool. This region has high rainfall rates
distributed evenly during the year, which is important since
production in tropical forests are highly dependent on moisture
Fig. 9. Intra-annual modeling of pastures biomass distribution at different latitudes. E

season), April (first wet season) and September (after mild dry season); (a) and (b) are
availability during the dry season where light and radiation are
available (Malhi et al., 2006). The Andes region has an important
amount of cropping (here considered as secondary forests or
savannas) and infrastructure. However, some forests still remain in
the north, east and west sides of the Andes mountain range. Lower
concentrations of biomass are found in the savannas of the
ach figure has the biomass distribution for three different months: February (dry

located in the Caribbean regions and (c) and (d) in the Orinoco plains.
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Orinoquı́a characterized by the presence of grasslands (e.g.
Trachypogon vestitas and Trachypogon plumosus) and dedicated
to cattle farming. The Caribbean region also presents low biomass
values due to the arid conditions in the north and the presence of
savannas along the Magdalena River; the main concentrations of
biomass is located in the North of the Sierra Nevada de Santa
Marta.

3.4. Biomass temporal distribution

Savannas are highly dynamic within a year and thus a
description of the temporal biomass distribution is needed. As
expected, these trends are closely related to rainfall (Fig. 8), where
February represents the dry season with a large occurrence of
biomass burning (Chuvieco et al., 2008); April represents the start
of the wet season followed by a mild dry season in June and July;
from September to November there is a second rainy season that
decreases towards December to start a new cycle.

The year 2004 was selected to illustrate intra-annual savanna
biomass trends at four sites of 2500 km2 chosen at different
latitudes. In general, the distribution shifts towards larger biomass
values from February to September where it reaches a maximum.
The southern sites Fig. 9(a) and (b) have a content of pixels with no
biomass, i.e. pixels located at zero, meaning bare soil or water
bodies. This is more evident in site (b) where large amounts of
pixels are located at biomass zero and thus related to small
biomass changes throughout the year. On the other hand, the
northern sites (c) and (d) are characterized for larger biomass
values where shrub lands and cropping are common.

4. Conclusions

VCF maps provide a spatial detail large enough to estimate AGB
distribution in the context of biogeochemical modeling, especially
in the tropics where data is scarce. Although there are no means to
estimate stand heights, distribution values of AGB could be
approached using detailed ground-based data and continuous
vegetation maps. Ground-based measurements of AGB and VCFt
pixel values were related to fit empirical equations. This method
was used based on the assumption that large contents of trees per
pixel (canopy density) must be associated to larger biomass values.
Empirical equations were fit independently for three types of
vegetation: primary forest, secondary forest and savannas. Canopy
density based on VCFt maps and AGB field data allows a large
improvement for biomass spatial distribution at a national level.
Biomass assessment in Colombia is challenging given the large
diversity of vegetation types.

No significant empirical relationship was found between EVI
and forest biomass values, despite of the fact that successful results
had been found in non-tropical regions. There are two reasons to
support these results, first the growing season is difficult to be
defined in broad leaf tropical environments, and second, the
variability in magnitude of EVI values is lower in the tropical forest
than in temperate forests; EVI values for Colombian forests of the
Amazon ranges from 4250 to 5500 while in temperate forests like
East Asia ranges from 1000 to 5000 (Boles et al., 2004). On the other
hand, in the case of pastures, we found that intra-annual
productivity of field data behaves similar to the phenology
captured by EVI. For this reason we argued that pasture phenology
is closely related to intra-annual biomass changes and thus EVI is
statistically significant to explain intra-annual biomass changes.
These observations are confirmed by the TRMM precipitation
patterns which are similar to those found by Wessels et al. (2006).

With this methods and materials we estimated a total of 16.2
million Mg of aboveground biomass in Colombia. With the 90%
confidence intervals of the exponential equation upper and lower
biomass values are within 3.7 and 25.2 million Mg, the confidence
intervals are extremely large given the nature of the exponential
models. Linear models were also evaluated but these models are
unable to depict biomass distribution at the lower range. Our
results agree with FAO’s Forestry Resources Assessment Pro-
gramme where 15.4 million Mg are reported for forest lands (FAO,
2006). Moreover, based on (Olson et al., 2003) carbon density
estimates are 8.1 million Mg for the whole country, resulting in
16.2 million Mg of biomass, where 97% (15.7 million Mg),
correspond to primary forests. These results are within the range
of previous studies and with a major improvement in spatial detail.

VFC maps are a useful representation of vegetation with an
appropriate detail level at regional scale but temporal resolution is
scarce. New versions of annual VCF product are required to track
vegetation change in terms of land use and biomass change
assessment. On the other hand, more research is required to
adequately design biomass field plots that are to be related with
canopy density information derived from remote sensing observa-
tions.
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