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Abstract

New concepts for river management in northwestern Europe are being developed which aim at both flood protection and nature conservation.
As a result, methods are required that assess the effect of management activities on the biodiversity of floodplain ecosystems. In this paper, we
show that dynamic vegetation models (DVMs) in combination with regional scale derived remote sensing products can be adopted to assess both
current and future ecosystem development and biodiversity status of a complex floodplain ecosystem in the Netherlands. The dynamic vegetation
model SMART2-SUMO2 in combination with the nature valuation model NTM3 predicting potential floristic diversity was applied to simulate
the biodiversity status of the Millingerwaard floodplain along the river Rhine in the Netherlands. Estimates of net primary production (NPP)
derived from airborne HyMap imaging spectrometer data were used for validation of the simulated NPP by the DVM at the time of data
acquisition in 2004. Imaging spectrometer derived NPP was in good agreement with the SMART2-SUMO2 modeled results. The NTM3 derived
nature valuation in 2004 expressed as plant diversity for the floodplain was high and well in agreement with field observations. In a next step, the
DVM was re-initialized using imaging spectrometer derived NPP in 2004 and a forecast of plant diversity and biomass development in 2050 was
made. A comparison was performed for three pre-defined floodplain management scenarios using a data-assimilation based approach as well as
one without. Significant differences in biomass development can be observed between the scenarios. Predicted plant diversity for individual
ecosystems in 2050 shows increased variability for forest ecosystems compared to grass ecosystems. This shows that floodplain management
should take advantage of spatiotemporal dynamics of the floodplain as a basis for fostering the development of increased biodiversity. The results
of this study demonstrate that imaging spectrometer derived products can be used for validation and initialization of DVMs.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

River floodplains are biodiversity hotspots in northwestern
Europe (Ward et al., 2002). However many of the floodplains
have been converted to intensive agricultural use during the last
century, which led to a decline in biodiversity. In the Netherlands,
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the gradual termination of agricultural use of these floodplains, as
well as the decreasing pollution of river water, has led to an
increase of biodiversity (Nienhuis et al., 2002). Recent flooding
events in the Netherlands and elsewhere have drawn attention
towards imminent effects of climate change and the need to
maintain or even increase river discharge capacity (Kabat et al.,
2005). Therefore river management strategies are being devel-
oped which aim at both flood protection and nature conservation
(Geilen et al., 2004). This results in an important challenge as river
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floodplain systems are complex ecosystems. The lack of detailed
information about functional relationships and processes at the
landscape and catchment scale currently hampers assessment of
their ecological status (Jungwirth et al., 2002).

Spatiotemporal modeling approaches are increasingly being
used to assist river managers in the evaluation of the effective-
ness of measures to reduce flooding risks and to prevent loss of
biodiversity (Baptist et al., 2004; Geilen et al., 2004; Kooistra
et al., 2005a). Dynamic vegetation models (DVM) provide
cause–effect relationships to predict vegetation development
under the influence of different management schemes (e.g.,
mowing and grazing for grasslands, and thinning in forests)
(Wamelink et al., 2003; Wamelink, 2007). Recent advances in
biogeochemistry based process models prove that in combina-
tion with regional scale remote sensing derived products,
promising approaches testing ecological hypotheses as well as
assessing and forecasting the state of future landscapes can be
achieved (Turner et al., 2004). Several studies have shown how
remote sensing derived leaf area index (Hazarika et al., 2005;
Zhang et al., 2007), biomass (Kimball et al., 2000; Schaepman
et al., 2007) or canopy nitrogen (Ollinger and Smith, 2005) are
adopted to constrain an ecosystem model. Such approaches
require spatially continuous input of the state of the ecosystem
at simulation start and may profit from the assimilation of
relevant remote sensing derived biophysical and biochemical
state variables of the ecosystem under consideration. In
particular imaging spectroscopy based methods allow more
detailed and accurate retrieval of vegetation properties (e.g.,
biochemistry and structure) than is possible with broad-band
sensors (Ollinger and Smith, 2005), and they may be applied for
the retrieval of relevant vegetation variables with unprecedented
accuracy (Schaepman et al., 2004). In recent years, a growing
number of studies have applied imaging spectroscopy to assess
biodiversity of either the terrestrial (Costa et al., 2007; Geerling
et al., 2007; Schmid et al., 2005) or the aquatic part (Hauer and
Lorang, 2004) of the floodplain ecosystem. However, the
number of studies dealing with a combined remote sensing and
dynamic vegetation model approach for floodplain ecosystems
is limited (Schaepman et al., 2007).

The objective of this paper is to combine a dynamic vege-
tation model with regional scale remote sensing derived prod-
ucts to improve the simulation and evaluation of management
strategies on the current and future biodiversity status of a
floodplain ecosystem. We investigate the effect of floodplain
management activities on the development of aboveground net
primary production (NPP) and floristic diversity by linking the
model chain SMART2-SUMO2-NTM3 (Van Dobben et al.,
2002; Kros et al., 2002; Wamelink et al., 2003; Wamelink,
2007) using imaging spectroscopy derived variables for a river
floodplain in the Netherlands. The dynamic vegetation model
was initialized and validated using remotely sensed data. A
scenario analysis using the model chain SMART2-SUMO2-
NTM3 was carried out comparing the effect of management
activities like grazing and harvest of woody biomass on the
potential floristic diversity of the floodplain. Implications for
floodplain management and the requirements for further
development of the presented approach are discussed.
2. Materials and methods

2.1. Study site and field measurements

The effect of floodplain management activities on biodiversity
was evaluated for the Millingerwaard floodplain. The floodplain
(51°84'N, 5°99' E) is located along the river Waal, one of the
main branches of the river Rhine in the Netherlands (Fig. 1). The
floodplain covers an area of about 700 ha and is part of the
Gelderse Poort nature reserve with a total area of 6700 ha. Before
the 1990s, main land use within the Millingerwaard floodplain
was agriculture consisting of production grassland and cropland
(e.g., maize). Starting from 1990, the agricultural production was
gradually reduced and a nature rehabilitation programwas started.
The floodplain was allowed to undergo natural succession and a
regime of grazing by cattle and horses in low densities was in-
troduced. The current vegetation of the floodplain consists of
mixed patches and ecotones, i.e. transitions between communities
with a dominance of grass, herbaceous vegetation, or shrub, and a
large softwood forest. In addition, several clay pits are present.
Nature management aims to increase biodiversity, under the
condition that the discharge capacity of the river should be above
the critical safety levels during flooding events.

In the two weeks after the acquisition (28/7/2004) of HyMap
imagery for the Millingerwaard, extensive ground sampling was
carried out. Separate sampling schemes were employed to char-
acterize the mixed canopy structure of grass, herbaceous and
shrub vegetation and the forest canopy structure (Mengesha et al.,
2005). Softwood forest in the Millingerwaard is dominated by
willow trees (Salix fragilis and Salix alba). The forest canopy has
an open structure with a dense undergrowth (Urtica dioica, Arc-
tium lappa, Galium aparine) and open water bodies due to the
low elevation and high ground water levels. The non-forest veg-
etation is characterized by a heterogeneous patchy structure
of different vegetation succession stages. Dominant species are
U. dioica, Calamagrostis epigejos, and Rubus caesius.

Twenty-one sampling sites were selected (Fig. 1) based on an
existing vegetation map created in 2002 for the Millingerwaard
(Van Geloof & de Ronde, 2002), complemented by a field
survey to adjust for potential changes (Kooistra et al., 2005b).
For every sampling site, a relevé plot of 2×2 m was established
and the coordinates of the central location of each sampling site
were determined by a differential global positioning system
(DGPS). Avegetation description was recorded for every relevé
following the method of Braun-Blanquet (1951). Abundance
per species was visually estimated as percentage soil covered by
living biomass in vertical projection, and scored in a nine-point
scale. All bryophytes, lichens and vascular species that were not
readily recognizable in the field were collected for later iden-
tification. Taraxacum species were taken together as T. vulgare,
and Rubus species were taken together as R. fruticosus, except
R. caesius. No subspecific taxa were used. The vegetation
type for every sampling site was classified according to the
syntaxonomic nomenclature as described by Schaminée et al.
(1998). In addition, a description was made of the soil type,
groundwater conditions and management (e.g., grazing) of each
sampling site.



Fig. 1. Location of the sampling sites in the floodplain Millingerwaard. The inset shows the location of the floodplain along the river Waal, the main branch of the river
Rhine in the Netherlands.
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Vegetation biomass was sampled at the 21 sampling sites
using three subplots (0.5×0.5 m) with a homogeneous vege-
tation cover located at three corners of each main plot for which
the vegetation description was made. Biomass was clipped at
0.5 cm above the ground level and stored in paper bags. The
collected material was air-dried, first for 5 days at room
temperature in open bags, and subsequently for 24 h at 70 °C,
andweighed. Biomass values for the subplots were averaged to a
mean value for the sampling site.

Earlier studies (Knapp et al., 2002; Symstad et al., 2003)
indicate that apparent relations can be found between plant
species diversity and primary production. Therefore, the assess-
ment of vegetation development in theMillingerwaard floodplain
was based on both NPP and the potential floristic diversity
derived from SMART2-SUMO2 and the NTM3 model, respec-
tively. NPP, the net amount of carbon fixed in vegetation biomass,
is related to plant photosynthetic activity and can be estimated
from remotely sensed imagery by observing patterns of light
absorption (Sellers, 1995). In this paper, we refer to NPP as the
aboveground part of the vegetation which is determined using
remotely sensed based methods. An overview of the developed
approach for combining regional scale remote sensing with
a dynamic vegetation model to assess the biodiversity of the
Millingerwaard floodplain is presented in Fig. 2. In the next
sections, the different components of the approach are explained
in more detail.
2.2. Image data processing

Imaging spectrometer data for the Millingerwaard were
acquired on 28th of July 2004 with the airborne HyMap sensor
(Integrated Spectronics, Australia) (Cocks et al., 1998). A
contiguous spectral range from 450–2480 nmwas recorded with
a spectral resolution of 15–20 nm in 128 spectral bands. The pre-
processed data contained only 126 bands because the first and
last band were deleted due to excessive noise. The flight was
performed close to the local solar noon (11:38 h UTC) at a solar
zenith angle of 33° and solar azimuth angle of 178°. In addition,
the flight line was oriented close to the solar principal plane to
minimize directional effects of the across-track scanning instru-
ment. The HyMap images were geo-atmospherically corrected
using the parametric geocoding approach PARGE (Schlapfer
& Richter, 2002) and the atmospheric correction program
ATCOR4 (Richter & Schlapfer, 2002) to obtain geo-located
surface reflectance. Pre-processing partially compensated for
adjacency effects as well as directional effects induced by the
atmosphere. There was no particular treatment of the surface
induced anisotropy in this approach; as a result the surface
reflectance data approximate a Hemispherical Directional
Reflectance Factor (HDRF) following the terminology of
Schaepman-Strub et al. (2006). The HyMap HDRF data were
mapped to UTM projection (Zone 31 N, geodetic datum
WGS84) at an equally spaced ground sampling distance of



Fig. 2. Schematic overview of the developed approach for combining regional scale remote sensing with a dynamic vegetation model to assess current and future status
of river floodplains.
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5 m in both axes. An image quality assessment of the pre-
processed image was made and the image based signal-to-noise
ratio (SNR) per individual band was calculated. This analysis
revealed that 9 of the 126 bands (bands at 445 nm, 879 nm,
1403–1418 nm, 1804 nm, 1951–1969 nm, and 2464–2479 nm)
should be used with caution, due to limited radiometric
performance. Consequently, further analysis was restricted to
the remaining 117 spectral bands.

2.3. Derivation of NPP from imaging spectroscopy data

For the estimation of NPP based on imaging spectrometer data
in the Millingerwaard, methods for estimating plant productivity
from observations of the fraction of absorbed photosynthetically
active radiation (fAPAR) and light use efficiency as proposed by
Monteith (1972, 1977) were adopted. The underlying concept for
many remotely sensed measures of carbon uptake is that the ratio
of absorbed light to carbon assimilation inmost plants is relatively
constant (Lobell et al., 2002). This ratio is called the light use
efficiency (LUE) and is used to translate remotely sensed
estimates of light absorption in NPP following:

NPP ¼ PAR� fAPAR � LUE ð1Þ

where NPP is the aboveground net primary productivity
(gC m−2 time−1), PAR is total incident photosynthetically
active radiation (Wm−2), fAPAR is the fraction of PAR absorbed
by photosynthetic tissues (unitless), and LUE is the light use
efficiency (gC MJ−1).

Regional and global scale NPP studies require accurate es-
timates of fAPAR and LUE (Bradford et al., 2005). LUE is known
to exhibit spatial variation over vegetation types (Turner et al.,
2002) and temporal variation at individual sites (Ahl et al., 2004).
A number of studies (Sims et al., 2006) compared the photo-
chemical reflectance index (PRI) and LUE for structurally
complex vegetation, and found significant relations (Rahman
et al., 2001; Strachan et al., 2002). The PRI is especially sensitive
to changes in xanthophyll pigment activity and thus to light use
efficiency (Gamon et al., 1992; Gamon et al., 1997; Penuelas
et al., 1995). In this study, LUE was obtained from the PRI which
was calculated according to:

PRI ¼ q531 � q570ð Þ= q531 þ q570ð Þ ð2Þ

where ρ531 and ρ570 indicate reflectance at 531 nm and 570 nm,
respectively. The HyMap band 8 (543 nm) and band 10 (573 nm)
were used to approximate the required PRI narrow band settings.
In this context, we use PRI in its normalized fashion, theoretically
ranging between−1 and +1 as described byRahman et al. (2004).
The scaled PRI was calculated by adding 1 to each PRI value and
dividing the result by 2. This scaled value of PRI was then used as
an approximation for the spatial variation in LUE (Rahman et al.,
2004).

The fraction of PAR absorbed by photosynthetic tissues
( fAPAR) was expressed as function of leaf area index (LAI)
(Turner et al., 2002) by an exponential function based on Beer's
law (Baret & Guyot, 1991):

fAPAR ¼ b0 � 1� b1 � e LAI�b2ð Þ
� �

ð3Þ

where b0 is the asymptotically limiting value of PAR absorption
for an infinite limiting thick canopy, b1 is a coefficient
depending on experimental errors and deviation from model
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assumption, and b2 is a coefficient which controls the slope of
the relationship (equivalent to an extinction coefficient) (Turner
et al., 2002). The value for b1 was set to 1. Values for b0 and b2
were determined from field measurements using the hemi-
spherical camera and were set to 0.9 and 0.38, respectively
(Mengesha et al., 2005).

Estimates of LAI for the Millingerwaard floodplain were
retrieved using the method proposed by Chen et al. (2002). The
Reduced Simple Ratio (RSR) was derived from the HyMap data
according to:

RSR ¼ qNIR
qred

1� qSWIR � qSWIRmin

qSWIRmax � qSWIRmin

� �
ð4Þ

where ρNIR, ρRED and ρSWIR are the reflectance in HyMap band
28 (846 nm), band 15 (650 nm) and band 82 (1661 nm),
respectively. ρSWIRmin and ρSWIRmax are the minimum and
maximum SWIR reflectance in the HyMap image defined as the
1% minimum and maximum cut-off values of the SWIR band
histogram. LAI was retrieved and validated using RSR for the
softwood forest area (Mengesha et al., 2005) using the transition
formula for deciduous forest according to Chen et al. (2002):

LAI ¼ �3:86 ln 1� RSR=9:5ð Þð Þ ð5Þ

For this study, we applied this relation to the complete
floodplain area, independent of land cover type. The derived
LAI values were used to estimate fAPAR for the Millingerwaard
floodplain according to Eq. (3). PAR measurements as recorded
at a nearby meteorological station were used for the NPP
calculations, with a value of 2.05 MJ m−2 at the time of the
HyMap acquisition, representing maximum cloud corrected
solar irradiance.

Imaging spectrometer derived NPP estimates were converted
frommass units of carbon (C) to units of biomass for comparison
with SMART2-SUMO2 estimates using 0.475 as the proportion
C in vegetation biomass (Raich et al., 1991). The daily estimate
of NPP based on the HyMap acquisition was extrapolated to
the 1 year temporal resolution of SMART2-SUMO2 assuming a
growing season of 180 days.

2.4. Dynamic vegetation modeling

The SMART2 model (Kros et al., 2002) simulates soil
processes, SUMO2 (Berendse, 1994; Van Dobben et al., 2002;
Wamelink, 2007) simulates vegetation processes and succes-
sion, whereas NTM3 (Wamelink et al., 2003) predicts the
potential floristic diversity based on groundwater level, nitrogen
availability and soil pH. SMART2 and SUMO2 are dynamic
process models that include complete nitrogen and carbon
cycles, based on time steps of one year. NTM3 is a static model
for which the input is mainly being provided by SMART2-
SUMO2. Below the three models are described in more detail.

The model SMART2 (Kros et al., 2002) describes linked
biotic and abiotic processes in the soil solution as well as in the
solid phase. The model considers the inorganic soil and two
organic soil compartments. The chemistry of the soil solution
depends on the net element input from the atmosphere and
ground water, canopy interactions, geochemical interactions in
the soil and nutrient cycling (including fertilization). SUMO2
provides estimates for nutrient uptake and litterfall (including
roots, branches and stemwood). SMART2 delivers the nitrogen
availability to SUMO2 as the sum of external N input and
mineralization. Due to the time step of one year, inter-annual
variation of the groundwater table is not accounted for. The
groundwater level is mainly determined by the water level in the
river Waal adjacent to the floodplain. The mean annual water
level in the river has been stable over the past decades (VanGeest
et al., 2005), therefore the groundwater table in the presented
model application was assumed to be stable over time.

Vegetation succession and biomass production are modeled by
SUMO2 (Berendse 1994; Van Dobben et al., 2002; Wamelink
et al., 2005). The biomass production in root, shoot and leaf is
simulated for five functional types (FT): (1) herbs and grasses; (2)
dwarf shrubs; (3) shrubs; (4) pioneer trees; and (5) climax trees.
The five FT compete with each other for nitrogen (including
nitrogen deposition), light, andmoisture. Competition for nitrogen
is based on the amount of biomass present in the roots of each FT.
Competition of light is a function of the height and the leaf
biomass of the FT. Actual biomass growth of each FT is the result
of a reduction ofmaximumgrowth bymoisture, nitrogen and light
availability. Management (e.g., mowing and grazing in grassland,
thinning in forest) is described as removal of part of the biomass
(including carbon and nitrogen) from the system. Net primary
production (NPP) is divided over root, shoot and leaf and cal-
culated by SUMO2 as biomass difference between consecutive
years taking into account litterfall and biomass removal through
management (e.g., grazing). SUMO2 requires information on soil
type and groundwater level, the initial vegetation type and nature
management. The model is initialized with a standard amount of
biomass for each functional type. This initial biomass may be
derived from a general model run or, as in this paper, from remote
sensing derived biomass estimates. SMART2 and SUMO2 share
information on litter fall and nitrogen availability on a yearly basis,
i.e. soil parameters are influenced by biomass parameters and vise
versa on a yearly basis.

NTM3 (Wamelink et al., 2003) is a regression model that
predicts the potential floristic diversity at given values of the soil
characteristics nitrogen availability, soil pH and moisture avail-
ability for four different ecosystems (grassland, heathland, de-
ciduous forest and coniferous forest). The nitrogen availability
and soil pH are simulated by SMART2. The moisture availability
is derived from a hydrological map. A nature conservation value
(NCV) was assigned to the vascular plant species occurring in the
Netherlands, based on the Red List criteria, i.e. the rarity, the
temporal trend and the size of the distribution of each species
(Mace and Stuart, 1994). Based on this approach, rare and
decreasing species that have their major distribution in the
Netherlands (i.e. The Netherlands contains a major part of the
population of the species) have a highNCV, common species get a
low value or even a negative value when they are increasing (e.g.,
invasive species). A dataset containing 160,000 vegetation
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descriptions (Hennekens & Schaminée, 2001) was used as a
training set to relate NCV to vegetation structure and soil
properties (soil acidity, nutrient availability and groundwater
table; cf. Wamelink et al., 2003). The calculated NCV for the
vegetation descriptions is regressed on the three soil variables
using non-linear regression techniques (p-splines). Separate
regressionmodels for four ecosystem types have been developed:
grassland, heathland, deciduous forest and coniferous forest
(Wamelink et al., 2003). The output of NTM3 is referred to as the
potential floristic diversity and is expressed in an ordinal scale
ranging between 7 and 19. Values larger then 13 indicate a high
probability of occurrence of Red List species (Tamis et al., 2004),
and values smaller then 9 indicate a low floristic diversity with a
very low probability of occurrence of red list species. The model
estimates the probability of occurrence for red list species under
the assumption that sufficient recolonization can take place if
conditions improve. For this reason the output of NTM3 is
described as potential floristic diversity.

2.5. Linking imaging spectroscopy and dynamic vegetation
models

The model chain SMART2-SUMO2-NTM3 is point based,
and thus does not describe spatial (horizontal) interaction. As a
result the models can be applied on various spatial scales. In order
to run the model chain on a regional or national scale, spatially
explicit data are required. A common problem in dynamic vege-
tation modeling is the limited availability of spatially explicit data
formodel initialization. This lack of initialization data requires the
model to compute initial levels of biomass within a functional
type, which can result in high uncertainties for these initial values.
In this studywe use imaging spectrometer derivedNPP to provide
the required initialization data for the SMART2-SUMO2 model.

The model chain SMART2-SUMO2-NTM3 was run for the
21 grassland and herbaceous vegetation sites in the Millinger-
waard. The model chain was run over a period of 81 years from
1970 to 2050. The first 25 years are used for initialization. The
initialization of SMART2-SUMO2 in 1970 assumed standard
biomass values for countrywide applications of both agricultural
and natural grassland. Hydrology was assumed to be constant
over time. Soil type and stocking density for grazing were esti-
mated from field observations per sampling plot. The output of
the model chain consists of the potential plant diversity per
vegetation type in 2050 and the temporal development of NPP
for the 21 sampling plots in the Millingerwaard.

A scenario-based approach was adopted to investigate the
influence of floodplain management on the future development
of potential plant diversity in the Millingerwaard. Scenarios are
based on a newly developed floodplain management strategy in
the Netherlands (Baptist et al., 2004; Duel et al., 2001). This
strategy, cyclic floodplain rejuvenation (CFR), aims at safe-
guarding flood protection and biodiversity conservation
through anthropogenic rejuvenation of floodplain ecosystems
(e.g., removal of softwood forest, lowering of floodplains and
construction of secondary channels). For this study, three
scenarios were compared, and implemented in SMART2-
SUMO2-NTM3:
Scenario 1 (‘extensive grazing’): extensive management
aiming at nature rehabilitation and increase of biodiversity
with limited grazing (1 grazing unit per hectare) and a non-
restricted development of all functional types. This has been
the management until the present day after the Millinger-
waard was taken out of agricultural use;
Scenario 2 (‘woody biomass removal’): intensive manage-
ment aiming at flood protection according to the strategy of
CFR. For all 21 sampling plots, woody biomass (shrub and
softwood forest) is completely removed in a 5 year cycle
starting in 1995 at the start of nature rehabilitation project in
the Millingerwaard. Woody biomass is removed because of
its large effect on hydraulic resistance during flooding
(Baptist et al., 2004).;
Scenario 3 (‘partly woody biomass removal’): management
aiming at the combined objective of flood protection and
nature rehabilitation through site-specific removal of all
woody biomass for a selected part of the floodplain in a
5 year cycle starting in 1995. Removal of woody biomass is
carried out in a corridor area which enables increased
discharge during high floods. The sampling plots, for which
woody biomass was removed in this scenario, are indicated
in Fig. 1, woody biomass is removed in 11 of the 21 plots.

Model validation was performed by comparing imaging
spectrometer derived NPP values for the 21 sampling plots with
the SMART2-SUMO2 simulated NPP in 2004. In a next step,
the SMART2-SUMO2 model was re-initialized with imaging
spectrometer derived NPP values using a forcing approach
(Dorigo et al., 2007; Barrett et al., 2005). This means that the
model estimated values of NPP in 2004 were replaced by the
remote sensing derived NPP values. In addition, the percentage
coverage of the different functional types was updated based on
the vegetation descriptions which were made in the field for the
21 sampling plots.

Forecasts until 2050 were made of NPP derived from
SMART2-SUMO2 and potential floristic diversity derived from
NTM3 for all three management scenarios. This means that for
every scenario the model chain SMART2-SUMO2-NTM3 was
run with and without initialization using imaging spectroscopy
derived variables.

3. Results and discussion

3.1. Imaging spectroscopy derived variables

Values for PRI range between 0 and 0.6 and varied con-
siderably over the study area (Fig. 3). Relatively low values
(0.1–0.3) are found in the scarcely vegetated areas along the
river, in the grass and shrub vegetated area in the centre of the
floodplain and in the softwood forest. Low PRI values for the
softwood forest are the result of the mixed influence of small
lakes and of shadowed pixels in this area. High values for PRI
(0.5–0.6) are found in agricultural fields and in herbaceous
patches in the Millingerwaard dominated by U. dioica. Com-
parison of PRI values with LUE values reported in literature
(Gower et al., 1999; Ahl et al., 2004) shows reasonable



Fig. 3. Imaging spectroscopy derived spatial distributed Photochemical Reflectance Index (upper left), Leaf Area Index (upper right), fraction of absorbed
photosynthetically active radiation (lower left), and Net Primary Production (lower right) for the Millingerwaard floodplain along the river Waal.
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agreement for mixed grass and shrub vegetation (0.3) and
forested wetland (0.41). PRI values for cropland are under-
estimated compared to literature reported LUE values deter-
mined from field studies (2–4) (Ahl et al., 2004; Lobell et al.,
2002). Earlier studies identified large differences between
remote sensing derived and field measured values for LUE
(Lobell et al., 2002; Ruimy et al., 1994). For this study, the
difference is partly explained by the applied normalization
procedure (Rahman et al., 2004) for scaling PRI values between
0 and 1. In addition, recent studies (Sims et al., 2006) indicate
that for local environmental conditions empirical relations can
be derived between PRI and LUE, but the mechanistic basis for
the generalization of these relationships across vegetation types
is currently under investigation since several physiological and
structural factors may affect PRI (Verrelst et al., 2007, in press).

Imaging spectroscopy derived LAI values for the Milli-
ngerwaard (Fig. 3) ranged between 1.5 and 4.5 for the grass and
shrub vegetated area and between 4.5 and 6 for the agricultural
fields. The relatively lower LAI values (1.5–3.5) for the soft-
wood forest can be related to the clumped nature of the forest
canopies (Mengesha et al., 2005). Based on the Beer's law
approach (Eq. (3)), imaging spectroscopy derived LAI was used
to derive fAPAR for the study area (Fig. 3). Again, resulting
fAPAR values were high for agricultural areas (0.6–0.8) com-
pared to natural vegetated areas (0.3–0.5).

Site-specific NPP was mapped for the Millingerwaard
floodplain (Fig. 3) using Eq. (1) and taking into account the
remote sensing derived values for PRI and fAPAR. The spatial
distribution of NPP shows a clear dependence with land cover.
Low NPP values (0–0.6 MJ m−2 day−1) were associated with
bare soils and low vegetated areas. Moderate NPP values (0.61–
1.1 MJ m−2 day−1) were mainly found for natural vegetated
areas. For the grass and shrub area, the spatial variability is low,
while the forested area exhibits small scale NPP variations due
to the heterogeneity of the canopy cover. High NPP values
(1.11–1.5 MJ m−2 day−1) were associated with agricultural
fields and some highly productive species (e.g., U. dioca) in the
naturally vegetated areas.



Fig. 5. Comparison of imaging spectrometer derived NPP and SMART2-
SUMO2 modeled NPP for 21 sampling plots in the Millingerwaard (R2=0.46).
Modeled NPP values are taken from the SMART2-SUMO2 run in 2004 for
scenario 1 (‘extensive grazing’).
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3.2. Validation of SMART2-SUMO2-NTM3 results

A comparison of SMART2-SUMO2 modeled estimates for
biomass and NPP was made with field measured biomass and
imaging spectroscopy derived estimates for NPP, respectively.
For this comparison the SMART2-SUMO2 estimated values of
biomass and NPP for scenario 1 in 2004 were used with
initialization of the model starting in 1970. The biomass derived
from destructive sampling for 21 sampling plots was in good
agreement (R2 =0.60) with SMART2-SUMO2 modeled bio-
mass for these plots (Fig. 4). Some lower field biomass values
(2–4 ton/ha) are underestimated by the model; however, the
values at the higher end of the distribution are estimated with a
reasonable accuracy. In this context, comparison of field and
modeled biomass can be considered as validation of the
SMART2-SUMO2 model. The output of the model is defined
as the maximum biomass at the peak of the growing season. For
grass and shrub vegetation types this peak is in the beginning
of August which coincides with vegetation biomass sampling
period in this study.

Total annual NPP simulated by the SMART2-SUMO2
model compared relatively well (R2 =0.46) with imaging
spectroscopy derived NPP values (Fig. 5). Model estimates
for NPP in 2004, taking into account management activities
as described for scenario 1, were made for the 21 sampling
locations. Some sampling sites are subject to a high grazing
intensity due to preferential grazing behavior. This effect is
reflected in relatively low values for both model and remote
sensing derived NPP. Remote sensing derived NPP values at the
higher end of the range show a negative bias compared to model
derived NPP. This can be attributed to the development of the
woody part of biomass which is not accounted for in the HyMap
estimate. Although vegetation for the 21 plots is dominated by
grass and herbaceous species, some species with a high
productivity (e.g., R. caesius, U. dioica) have a large woody
fraction.

In general, a satisfactory agreement is found between field
observations and model estimates on the one hand, and model
estimates and remote sensing derived variables on the other
Fig. 4. Comparison of field measured biomass with SMART2-SUMO2 modeled
biomass for 21 sampling plots in the Millingerwaard (R2=0.60). Modeled
biomass values are taken from the SMART2-SUMO2 run in 2004 for scenario 1
(‘extensive grazing’).
hand. Both model and remote sensing derived aboveground
NPP estimates fell within the range of values reported for
grassland ecosystems in temperate regions (Table 1). Compared
to NPP estimates from the Millingerwaard floodplain, reduced
values of NPP are observed for ecosystems in a limiting en-
vironment (e.g., temperature Turner et al., 2005 or water
availability Wang et al., 2007). In the case of an undisturbed
development of grassland vegetation, relatively higher NPP
values can be achieved (De Vries et al., 2007; Esser, 1998).
Differences between NPP values from Millingerwaard and the
other natural grassland location in the Netherlands (De Vries
et al., 2007) are mainly explained by the influence of nature
management (e.g., grazing) and differences in soil composition.
The sandy levee soils along the river have a relatively low
production compared to the grassland vegetation on clay soils
(De Vries et al., 2007). The relatively higher NPP value reported
for a forest floodplain (Clawson et al., 2001) indicates that an
increasing abundance of woody functional types (shrubs and
forest) could result in an increased NPP.

3.3. Scenario analysis

3.3.1. Development of NPP
Comparison of three floodplain management scenarios

shows a comparable development of simulated annual NPP
for all functional types in the Millingerwaard (Fig. 6). The
removal of woody biomass in a 5 year cycle for scenario 2 and 3
can be observed as a small reduction in NPP in 1995 compared
to scenario 1. Oscillations in NPP development in the first years
after (re-)initialization are due to model instability (Fig. 6).
Main differences are caused by re-initialization of the original
scenarios with imaging spectroscopy derived NPP values in
2004. NPP increases from approximately 4.8 ton ha−1 y−1 in
1970 to 6 and 7 ton ha−1 y−1 in 2050 for the scenarios with and
without re-initialization, respectively (Fig. 6). This difference
can partly be attributed to the lower imaging spectrometer
derived NPP values which were used for re-initialization of the
model in 2004 (Fig. 5). In addition, the composition of



Table 1
Comparison of aboveground NPP estimates for grassland ecosystems in temperate regions

Vegetation type Type of measurement NPP (ton ha−1 year−1) Temperature (°C) Country Source

Grassland RS derived 2.66 9.8 Netherlands Present study
Grassland Simulated 3.47 9.8 Netherlands Present study
Grassland — tundra RS derived 0.64 −10.9 USA Turner et al., 2005
Grassland — desert RS derived 0.54 13.5 USA Turner et al., 2005
Grassland — prairie Field 6.02 7.2 USA Esser, 1998
Grassland Field 7.2 7.3 Sweden Esser, 1998
Grassland Field 6.15 9.8 Netherlands De Vries et al., 2007
Grassland Field 2.03 4.9 China Wang et al., 2007
Grassland Field 1.31 4.9 China Wang et al., 2007
Forest — floodplain Field 5.83 13.4 USA Clawson et al., 2001
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functional types has been re-initialized according to field
observations resulting in a reduced tree biomass.

The effect of floodplain management activities on NPP de-
velopment is most pronounced for the woody functional types,
i.e., shrub and forest (Fig. 7). Removal of the woody part of the
vegetation in 1995 and periodic forest removal results in a
significant decrease of NPP for scenarios 2 and 3. This effect is
most pronounced for scenario 2 for which trees are removed
periodically in all 21 plots. Re-initialization of the model in
2004 with remote sensing derived NPP resulted in an additional
decrease of NPP for the functional types shrubs and trees. This
can mainly be attributed to reduced contribution of the tree
functional type which was re-initialized according to field
observations for the situation in 2004.

In the central part of the floodplain, current vegetation
succession shows a gradual increase of shrub coverage (e.g.,
Craetegus monogyna) at the expense of grass and herbaceous
vegetation types. This increase is reflected in vegetation
biomass development for scenario 1 that shows an increasing
contribution of the shrub and tree functional types. Although
total biomass for scenarios 2 and 3 decreases compared to
scenario 1 (Fig. 8), annual biomass production, i.e., NPP, is at a
Fig. 6. Development of total Net Primary Production (ton/ha) for all functional
types in the Millingerwaard until 2050 simulated using SMART2-SUMO2 for
three floodplain management scenarios: scenario 1 (‘extensive grazing’);
scenario 2 (‘complete woody biomass removal’); and scenario 3 (‘partly
woody biomass removal’). Each scenario is run with a standard initialization in
1970 (‘no RS’); and with initialization in 2004 using imaging spectrometer
derived estimates for NPP (‘RS’).
comparable level (Fig. 6). This can partly be explained by the
contribution of herbaceous species like U. dioica which have a
high annual productivity. However, at the end of the growing
season biomass is returned as litter to the soil, and total vege-
tation biomass of the system is not increasing. For scenario 1,
increasing biomass values are the result of storage in the woody
parts of the vegetation, while for scenario 2 and 3 this woody
part is periodically removed. Re-initialization of the SMART2-
SUMO2 model in 2004 shows not only the contribution of
imaging spectroscopy derived NPP to final model results in
2050 (Fig. 6), but also the influence of the composition of
functional types of the sampling plots in 2004 which is an im-
portant driver for the 2050 NPP estimate. For this study, we
derived the composition of functional types from field obser-
vations. Further research will focus on the development of a
remote sensing based approach for deriving plant functional
types (PFT) which can be adopted to characterize the abundance
of specific functional types as required by dynamic vegetation
models like SMART2-SUMO2 (Bonan et al., 2002).

3.3.2. Potential floristic diversity
The SMART2-SUMO2-NTM3 derived potential floristic

diversity in 2050 for the three defined river management
Fig. 7. Development of total Net Primary Production (ton/ha/year) for the
functional types shrubs and trees in the Millingerwaard until 2050 simulated by
SMART2-SUMO2 for three floodplain management scenarios: scenario 1
(‘extensive grazing’); scenario 2 (‘complete woody biomass removal’); and
scenario 3 (‘partly woody biomass removal’). Each scenario is run a standard
initialization in 1970 (‘no RS’); and with initialization in 2004 using imaging
spectrometer derived estimates for NPP (‘RS’).



Fig. 8. Development of total biomass (ton/ha) for all functional types in the
Millingerwaard until 2050 simulated using SMART2-SUMO2 for three
floodplain management scenarios: scenario 1 (‘extensive grazing’); scenario 2
(‘complete woody biomass removal’); and scenario 3 (‘partly woody biomass
removal’). Each scenario is run with a standard initialization in 1970 (‘no RS’);
and with initialization in 2004 using imaging spectrometer derived estimates for
NPP (‘RS’).
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scenarios in the Millingerwaard floodplain were compared to
diversity values in 2004 (Fig. 9). All the scenarios show a clear
increase of the potential floristic diversity in 2050. Compared
to studies at the national scale (Wamelink et al., 2003), the
floodplain represents an area with a high floristic diversity
potential (N13), which agrees with the general idea that flood-
plain ecosystems are valuable.

Differences between the scenarios are relatively small for the
mean floristic diversity of grassland ecosystems (Fig. 9). The
standard error in Fig. 9 represents the spatial variability between
the sampling sites. Initialization using spectrometer derived NPP
(‘RS’) results in an increased spatial heterogeneity of floristic
diversity as represented by high values for the standard error.
Especially, scenario 2 (periodical removal of all trees) shows a
Fig. 9. Comparison of NTM3 estimated potential floristic diversity in 2004 and
three scenarios in 2050 for the floodplain Millingerwaard. A differentiation is
made for diversity in grassland and forest ecosystems. The three floodplain
management scenarios are: scenario 1 (‘extensive grazing’); scenario 2
(‘complete woody biomass removal’); and scenario 3 (‘partly woody biomass
removal’). Each scenario is run with a standard initialization in 1970 (‘no RS’);
and with initialization in 2004 using imaging spectrometer derived estimates for
NPP (‘RS’).
high spatial variability which can be attributed to an increased
contribution of rare pioneer species for some of the harvested
plots. Due to tree removal in 2050, no floristic diversity value for
the forest ecosystem plots can be calculated for scenario 2.

The results of scenario 1 show that forest development has a
clear effect on floristic diversity (Fig. 9). Due to succession, a
more diverse ecosystem will be present in 2050 which gives a
relative high diversity value. Moreover, since not all plots will
consist of a forest ecosystem, the diversity will be much higher
compared to the scenario where all trees are removed and only
grassland will be present, i.e. the spatial diversity will be higher
when forestation is allowed in certain areas of the floodplain.
This variability is larger for the model runs started in 2004,
which are initialized using RS data. Clear differences are ob-
served in forest development between scenario 1 and scenario 3,
where extensive grazing gives a higher diversity than the un-
treated sites in the partly tree removal scenario. This indicates
that the influence of grazing on the quality of the forest that
evolves may be quite large. Compared to the model runs that
started in 1970, it looks like that eventually the differences may
disappear and the diversity in forest ecosystems may initially
increase, but later on decrease again. Links between diversity
and biomass are well known (Grime, 1979; Schaffers, 2002;
Marriott et al., 2004). In general, higher biomass results in lower
floristic diversity. These results indicate that especially the inter-
mediate succession stages of shrubs and pioneer trees are im-
portant contributors to floristic diversity in river floodplains.

For reference, future potential floristic diversity (Fig. 9) was
compared with the historic development of actual diversity in the
floodplain (Table 2). Actual floristic diversity was based on the
nature conservation value (Mace and Stuart, 1994) calculated
from available vegetation relevés in the years 1954, 1967, 1975
and 2004. For all relevés, presence and abundance of species were
sampled according to the method of Braun-Blanquet (1951). In
the 1950s, the floodplain is considered a valuable areawith a large
variation in the field as represented by the high value for the
standard error. During the 1960, agricultural activities resulted in a
clear decrease of plant diversity, while also the spatial variability
was minimized. Starting from the middle of the 1970s an im-
provement of the actual plant diversity can be observed. Recent
Table 2
Historical development of the actual floristic diversity for the floodplain
Millingerwaard

Year n Nature conservation value

Grass Forest

Mean S.E. Mean S.E.

1954 3 12.6 1.9 n/a n/a
1967 10 7.2 0.3 n/a n/a
1975 5 10.1 2.4 n/a n/a
2004 21 9.1 1.07 9.76 1.66

The nature conservation values are derived from available vegetation relevés in
the years 1954, 1967, 1975 and 2004. The standard error (S.E.) represents the
spatial variability between the sampling sites.
n/a indicates that no vegetation relevés for forest ecosystems were available for
these years.
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observations in 2004 show the contribution of forest ecosystems
to plant diversity. Deviations of actual field derived diversity
values (Table 2) from potential modeled values (Fig. 9) indicate
that future management practices should aim at the improvement
of recolonization conditions of more valuable plant species.

The results of the scenario analysis for the Millingerwaard
floodplain indicates that intensive management activities (e.g.,
forest removal) are mainly affecting total biomass (Fig. 8) and
to a lesser extent NPP (Fig. 5). Shifts of floristic diversity can be
observed (Fig. 9) when changes are quantified specifically for
forest and non-forested ecosystems, however total plant
diversity between scenarios is comparable. Floodplain manage-
ment according to the strategy of cyclic rejuvenation should
focus on both. As sampling sites were located in areas with a
dominating grass and herbaceous coverage, general conclusions
on the effect of floodplain management activities on river
landscape biodiversity can only be made when sites with shrub
and tree coverage are also accounted for.

Re-initialization of the SMART2-SUMO2-NTM3 model
chain with imaging spectroscopy derived variables resulted in
lower estimates for total NPP (Fig. 6) and total biomass in 2050
(Fig. 8) compared to model runs without initialization. Re-
initialization had a limited effect on total values for floristic
diversity except for an increase of the spatial variability (Fig. 9).
However, floristic diversity specified for forest and non-forest
ecosystems indicated some clear differences between scenarios.

3.4. Linking remote sensing and dynamic vegetation models:
limitations and opportunities

Scaling biodiversity from the plot to the landscape scale is one
of the central issues in the ecological domain. In this study, we
have investigated the linkage of remote sensing and dynamic
vegetation models as a solution to bridge these scaling gaps. To
assess the uncertainties in the presented approach, an overview
of the limitations and assumptions in both the remote sensing
methodology and the modeling chain is an important requirement.
Main sources of uncertainty for the model chain SMART2-
SUMO2-NTM are related to the SMART2-SUMO2 vegetation
parameters (e.g., maximum growth rate, initial biomass) which
have the largest contribution to the uncertainty in the potential
floristic diversity (Schouwenberg et al., 2000). In this case remote
sensing derived NPP was used to test the model outcome and
subsequently to re-initialize model parameters and evaluate the
effect on biodiversity for future floodplain management scenarios.

Annual NPP estimates from both the model and remote
sensing for this case study fell within the range of values reported
for grassland ecosystems in temperate regions (Table 1). How-
ever, additional work is required to improve the remote sensing
based estimation of seasonal NPP development. In the current
study, the one day estimate for NPP was extrapolated assuming a
growing season of 180 days, which is corresponding to the NPP
representation in SMART2-SUMO2. A more accurate estimation
of NPP would need multiple image acquisitions over the year to
characterize the seasonal development of PRI and fAPAR. Turner
et al. (2004) identified limiting opportunities for validation of
NPP products derived from coarse resolution sensors (e.g.,
MODIS). The approach presented in this study offers the oppor-
tunity to validate these products by combining fine-scale remote
sensingwith dynamic vegetationmodelswhich at a later stage can
be adopted for up-scaling.

Model inputs on the hydrology of the floodplain as required for
the NTM model were represented in a relatively simple way.
Groundwater was assumed stable over the years. However, this is
justified by the relatively stable level of the riverWaal which is the
main determent of the groundwater level in the Millingerwaard
floodplain. Inter-annual variation of the ground water level could
not be taken into account due to the one year modeling time step
of the SMART2-SUMO2-NTM model. This is especially
important during flooding events when water levels are above
the ground level. On one hand, the vegetation in the floodplain is
adapted to these flood events (Van Eck et al., 2005), on the other
hand the timing of the flood event (e.g., late spring or summer)
can have an important influence on the development of vegetation
biomass within the season. Although this could mean that during
occasional years vegetation development is hampered by flooding
events, over the scenario period of almost 50 years, it has a low
influence on the estimates for the potential floristic diversity.
However, arguably neither the models nor the scenarios are well
prepared to currently include and predict increasing inter-annual
extreme events. Once a predictive capacity model chain has been
implemented, this will be the most important challenge to tackle.

For this study, we substituted the model NPP with the
remotely sensed NPP values, resulting in a simple feed-forward
forcing. In literature, various methods have been described to
integrate remotely sensed observations in agroecosystem
models (e.g., Dorigo et al., 2007). Additional work is still
required to arrive at an optimal data-assimilation strategy, in this
study the adopted type of dynamic vegetation models.

4. Conclusions

The results of this study demonstrate that imaging spectrometer
derived products can be used for validation and initialization of a
dynamic vegetation model like SMART2-SUMO2. Results for a
case study in a floodplain ecosystem show that modeled estimates
of NPP and imaging spectrometer derived values were well in
agreement (R2=0.46). Also a good agreement was found between
field observations for biomass and model estimated values
(R2=0.60). Combination of SMART2-SUMO2 with the nature
valuation model NTM3 allowed the assessment of potential plant
diversity for the investigated floodplain. The use of site-specific
imaging spectrometer based estimates of NPP and LAI for
initialization of SMART2-SUMO2 increases the reliability for the
assessment of current and future biodiversity. Re-initialization of
the DVMs using remote sensing derived variables resulted in lower
estimates for biomass and NPP, however, plant diversity was
comparable with scenarios without re-initialization.

The analysis of the defined floodplain management scenarios
indicated clear difference between scenarios in spatial and
temporal development of NPP and floristic diversity. Floristic
diversity estimates for individual ecosystems indicated
increased spatial variability for forest ecosystems compared to
the grass ecosystem. This shows that floodplain management
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according to the strategy of cyclic rejuvenation should not treat
a floodplain area as one general spatial unit, but instead should
take advantage of the spatiotemporal dynamics of the floodplain
as a basis for increased biodiversity. In addition, future manage-
ment practices should aim at the improvement of recolonization
conditions of more valuable plant species. The derived and
predicted biodiversity can be used at scales beyond regional,
allowing floodplain managers to implement protective mea-
sures at river catchment scale. In combination with climate-risk
scenarios, the presented combined remote sensing and vegeta-
tion model approach is most useful for a sustainable and risk-
balanced planning for river floodplains.
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