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dex (EVI) was developed as a standard satellite vegetation product for the Terra
and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS). EVI provides improved sensitivity in
high biomass regions while minimizing soil and atmosphere influences, however, is limited to sensor
systems designed with a blue band, in addition to the red and near-infrared bands, making it difficult to
generate long-term EVI time series as the normalized difference vegetation index (NDVI) counterpart. The
purpose of this study is to develop and evaluate a 2-band EVI (EVI2), without a blue band, which has the best
similarity with the 3-band EVI, particularly when atmospheric effects are insignificant and data quality is
good. A linearity-adjustment factor β is proposed and coupled with the soil-adjustment factor L used in the
soil-adjusted vegetation index (SAVI) to develop EVI2. A global land cover dataset of Terra MODIS data
extracted over land community validation and FLUXNET test sites is used to develop the optimal parameter
(L, β and G) values in EVI2 equation and achieve the best similarity between EVI and EVI2. The similarity
between the two indices is evaluated and demonstrated with temporal profiles of vegetation dynamics at
local and global scales. Our results demonstrate that the differences between EVI and EVI2 are insignificant
(within ±0.02) over a very large sample of snow/ice-free land cover types, phenologies, and scales when
atmospheric influences are insignificant, enabling EVI2 as an acceptable and accurate substitute of EVI. EVI2
can be used for sensors without a blue band, such as the Advanced Very High Resolution Radiometer
(AVHRR), and may reveal different vegetation dynamics in comparison with the current AVHRR NDVI dataset.
However, cross-sensor continuity relationships for EVI2 remain to be studied.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Satellite vegetation index (VI) products are commonly used in awide
variety of terrestrial science applications that aim to monitor and
characterize the Earth's vegetation cover from space (e.g. Myneni et al.,
1997a;Saleska et al., 2007). VIs areopticalmeasuresof vegetation canopy
“greenness”, a composite property of leaf chlorophyll, leaf area, canopy
cover, and canopy architecture. Although VIs are not intrinsic physical
quantities, they are widely used as proxies in the assessment of many
biophysical and biochemical variables, including canopy chlorophyll
content (Blackburn,1998; Gitelson et al., 2005), leaf area index (LAI) (e.g.
Boegh et al., 2002; Chen & Cihlar, 1996), green vegetation fraction (e.g.
Gutman & Ignatov, 1998; Jiang et al., 2006a; Zeng et al., 2000), gross
primary productivity (GPP) (Rahman et al., 2005; Sims et al., 2006), and
fraction of photosynthetically active radiation absorbed by the vegeta-
tion (FAPAR) (e.g. Di Bella et al., 2004; Myneni et al., 1997b).

As global climate and land use/land cover changes are occurring at
unprecedented rates, long-term consistent and continuous satellite
data records are desperately needed to monitor and quantify changes
to the global environment. VI time series data records have played an
l rights reserved.
important role inmeasuring and characterizing land surface responses
to climate variability and change (e.g. Heumann et al., 2007; Tucker
et al., 2001). Normalized difference vegetation index (NDVI) time series
data products based on the Advanced Very High Resolution Radio-
meter (AVHRR) instruments, such as the GIMMS (Global Inventory
Modeling and Mapping Studies) and Pathfinder AVHRR Land (PAL)
datasets, are available from 1981, and have contributed significantly to
global land processes studies, vegetation–climate interactions, and
other advancements in Earth System Science (e.g. Defries & Belward,
2000; Suzuki et al., 2007; Townshend, 1994; Tucker et al., 1986).

However, it remains a challenge to produce long-termand consistent
vegetation index time series across sensor systems with variable
spectral response functions, spatial resolution, swathwidth and orbiting
geometry. Degradations in the AVHRR instrument gain values and drifts
in the calibration coefficients may result in significant errors in VI time
series computed from prelaunch calibration values (e.g. Che & Price,
1992; Kaufman & Holben, 1993). Numerous investigations have
evaluated NDVI continuity, and proposed NDVI inter-sensor translation
equations, across AVHRR sensors (e.g. Los, 1993; Roderick et al.,1996) as
well as between AVHRR and more recent sensors, including the
Moderate Resolution Imaging Spectroradiometer (MODIS), the System
Pour I'Observation de la Terre (SPOT)-VEGETATION, the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS), the Landsat Enhanced Thematic
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Mapper (ETM+), theMediumResolution Imaging Spectrometer (MERIS)
and the Visible/Infrared Imager Radiometer Suite (VIIRS) (Brown et al.,
2006; Fensholt et al., 2006; Gallo et al., 2005; Gitelson &Kaufman,1998;
Günther & Maier, 2007; Miura et al., 2006; Steven et al., 2003; Tucker
et al., 2005; van Leeuwen et al., 2006; Yoshioka et al., 2003).

VIs from MODIS instruments represent improved spatial, spectral,
and radiometric measurements of surface vegetation conditions
(Tucker et al., 2005). There are currently two vegetation index
standard products generated with data from the Terra and Aqua
MODIS instruments, NDVI and the enhanced vegetation index (EVI),
with the EVI utilizing a blue band in addition to the red and NIR bands.
In comparison to NDVI, EVI was found to be more linearly correlated
with green leaf area index (LAI) in crop fields (Boegh et al., 2002), less
prone to saturation in temperate and tropical forests (Huete et al.,
2006; Xiao et al., 2004), and minimally sensitive to residual aerosol
contamination from extensive fires in the Amazon and Northern Asia
(Miura et al., 1998; Xiao et al., 2003).

Although there are many studies investigating cross-sensor
continuity of NDVI, investigations on EVI cross-sensor translation
are quite few. Fensholt et al. (2006) suggested that the consistency of
EVI values across different sensors might be more problematic due to
more difficult and varying atmospheric correction schemes of the blue
band. There are almost 9 years of MODIS EVI time series available
since 2000. The extension of the EVI time series, back to 1981 with the
historical AVHRR data, is desirable but difficult since EVI is limited to
sensor systems designed with a blue band, in addition to the red and
near-infrared bands.

However, since the role of the blue band in EVI does not provide
additional biophysical information onvegetationproperties, but rather
is aimed at reducing noise and uncertainties associated with highly
variable atmospheric aerosols, a 2-band adaptation of EVI should be
compatible. Although a 2-band EVI (EVI2)would be computedwithout
a blue band, it would remain functionally equivalent to EVI, although
slightlymore prone to aerosol noise, which is becoming less significant
with continuing advancements in atmosphere corrections.

The purpose of this study is to develop and evaluate a 2-band EVI,
without a blue band, which has the best similarity with the 3-band
EVI, particularly when atmospheric effects are insignificant and data
quality is good. The overall aim for EVI2 is to maintain the soil-
adjustment and linearization functions in EVI. In this way EVI2 can be
used as an acceptable substitute of EVI over atmospherically corrected
and good quality pixels. The development of EVI2 would enable
extension of EVI to instruments without a blue band, such as AVHRR
and the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), for cross-sensor applications and for generating
a backward compatibility of EVI to the historical AVHRR record, thus
complementing the NDVI long-term record.

This paper is organized to first provide a brief review of the VIs of
concern to this study, followed by a conceptual approach to the
development of a new vegetation index, the linear vegetation index
(LVI), which is calibrated to fit EVI and labeled EVI2. Our data and
methods are chosen to achieve a globally-representative diverse set of
landscape conditions to achieve the best similarity between EVI2 and
EVI. The EVI2–EVI consistency is evaluated and demonstrated spatially
and temporally at global and local scales. Differences and similarities
between EVI2 and other VIs are then discussed and summarized.

2. Brief review of vegetation indices

NDVI is defined by:

NDVI ¼ N−R
N þ R

ð1Þ

where N and R are the reflectances in the near-infrared (NIR) and red
bands. Despite the usefulness of NDVI data in vegetation studies, it
does have some limitations related to soil background brightness, in
which separate NDVI relationships with canopy biophysical properties
are found over different soil and moisture conditions (Bausch, 1993;
Elvidge, & Lyon, 1985; Huete et al., 1985). In order to overcome this
problem, Huete (1988) proposed using a soil-adjustment factor, L, to
account for first-order, non-linear, differential NIR and red radiative
transfer through a canopy, and obtained a soil-adjusted vegetation
index (SAVI),

SAVI ¼ 1þ Lð Þ N−R
N þ Rþ L

ð2Þ

Several modifications have been made to the SAVI equation, and
the transformed SAVI (TSAVI) (Baret & Guyot, 1991; Baret et al., 1989),
modified SAVI (MSAVI) (Qi et al., 1994), optimized SAVI (OSAVI)
(Rondeaux & Baret, 1996), and generalized SAVI (GESAVI) (Gilabert
et al., 2002) were subsequently proposed.

NDVI is also sensitive to attenuation and scattering by the atmo-
sphere from highly variable aerosols (Ben-Ze'ev et al., 2006; Carlson &
Ripley, 1997; Kaufman & Tanré, 1992; Miura et al., 1998). The
atmospherically resistant vegetation index (ARVI) was proposed by
Kaufman and Tanré (1992) inwhich aerosol effects are self-corrected by
using thedifference in blue and red reflectances to derive the surface red
reflectance. Another approach tominimize atmospheric effects onNDVI
is to use the middle-infrared wavelength region (1.3–2.5 μm) as a
substitute for the red band since longer wavelengths are much less
sensitive to smoke and aerosols (Karnieli et al., 2001; Miura et al.,1998).

Finally, NDVI is non-linear and saturates in high biomass vegetated
areas (e.g. Gitelson, 2004;Huete et al., 2002;Ünsalan&Boyer, 2004). The
sensitivity of NDVI to leaf area index (LAI) becomes increasingly weak
with increasingLAI beyonda threshold value,which is typically between
2 and 3 (Carlson & Ripley, 1997). Reduction of saturation effects and
improved linearity adds to the observed accuracy in estimating
biophysical parameters from the VI values and provides a mechanism
for multi-sensor (resolution) scaling of VI values (Huete et al., 2002).

Several methods have been reported recently to overcome the
saturation effects on NDVI. Ünsalan and Boyer (2004) proposed to
transform NDVI by using an inverse tangent function. However, a
sensitivity analysis found the transformed NDVI cannot improve
sensitivity to vegetation at vegetation fractions larger than 0.6 (Jiang
et al., 2006b). Gitelson (2004) and Vaiopoulos et al. (2004) further
proposed adding weighting factors to the NIR reflectance term in the
NDVI equation to adjust the relative contributions of the NIR and red
reflectances to NDVI. However, theseweighting factors did not address
the influence of soil background and they altered the dynamic range of
NDVI, resulting in a range between −0.6 and 0.6 (Gitelson 2004).

EVI was developed to optimize the vegetation signal with
improved sensitivity in high biomass regions and improved vegeta-
tion monitoring through a de-coupling of the canopy background
signal and a reduction in atmosphere influences:

EVI ¼ G
N−R

N þ C1R−C2Bþ L
ð3Þ

where N, R, and B are atmospherically corrected or partially atmo-
sphere-corrected (Rayleigh and ozone absorption) surface reflectances
in near-infrared, red and blue bands respectively;G is a gain factor; C1,C2
are the coefficients of the aerosol resistance term, which uses the blue
band to correct for aerosol influences in the red band, and L functions as
the soil-adjustment factor as in SAVI (Eq. (2)), but its value is different
from the L in SAVI, attributed to the interaction and feedbacks between
the soil-adjustment factor and the aerosol resistance term (Liu & Huete,
1995). The coefficients adopted in the MODIS EVI algorithm are, L=1,
C1=6, C2=7.5, and G=2.5. EVI has been used recently in a wide variety
studies, including thoseon landcover/landcover change (Wardlowet al.,
2007), estimation of vegetation biophysical parameters (Chen et al.,



Fig. 2. Relationships between EVI with SAVI and SASR generated from MODIS data as
described in Section 4.1.
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2004;Houborget al., 2007), phenology (Ahl et al., 2006;Xiaoet al., 2006;
Zhang et al., 2003), evapotranspiration (Nagler et al., 2005), biodiversity
(Waring et al., 2006), and the estimation of gross primary production
(GPP) (Rahman et al., 2005; Sims et al., 2008, 2006).

EVI not only gains its heritage from SAVI and ARVI, but also improves
the linearity with vegetation biophysical parameters, encompassing a
broader range in LAI retrievals (Houborg et al., 2007). It has also been
shown to be strongly linear related and highly synchronized with
seasonal tower photosynthesis measurements in terms of phase and
amplitude, with no apparent saturation observed over temperate
evergreen needleleaf forests (Xiao et al., 2004), tropical broadleaf
evergreen rainforests (Huete et al., 2006), and particularly temperate
broadleaf deciduous forests (Rahman et al., 2005; Sims et al., 2006).
Deng et al. (2007) found that EVIwas effective in vegetationmonitoring,
change detection, and in assessing seasonal variations of evergreen
forests. Wardlow et al. (2007) found that NDVI began to approach an
asymptotic level at the peak of the growing season over cropland,
whereas EVI exhibited more sensitivity during this growth stage.

3. Derivation of a 2-band EVI

Themain concept of the SAVI is that vegetation biophysical isolines
in NIR-red reflectance space, i.e., lines in a spectral space correspond-
ing to constant vegetation amount (e.g. LAI, chlorophyll content,
biomass) and canopy structure (e.g., canopy shape, leaf angle
distribution) but varying pixel brightness caused by the variation of
soil background brightness, are neither parallel to a soil line as in the
case of perpendicular vegetation index (PVI) isolines (Richardson &
Wiegand, 1977), nor converge at the origin as in the case of NDVI
isolines, but instead, approximately converge at a point on a simplified
soil line (Y=X) shifted from the origin in the negative direction (Jiang
et al., 2006b; Huete 1988). For various crop canopies and a wide range
of vegetation amounts, the convergence point was approximately at
point E (− l, − l) (Fig. 1). Vegetation biophysical isoline behavior was
modeled graphically by SAVI isolines through shifting of the NIR-red
reflectance space origin toward the isoline convergence point E, and a
new coordinate system, Red'–NIR', is created, with Red' and NIR'
coordinates denoted as R' and N', respectively (Fig. 1). Shifting the
origin toward negative values is equivalent to adding an offset or
Fig. 1. The isolines of SAVI and the soil-adjusted simple ratio (SASR) and their angles in
red-NIR reflectance space. Any lines crossing point E is a SAVI isoline as well as a SASR
isoline according to its definition (Huete, 1988). Any given point P (R, N) in red-NIR
space corresponds to a unique SAVI/SASR isoline, PE. A new coordinate system, Red'–
NIR', is creased by shifting the origin of the red-NIR coordinate system to point E. The
coordinate of point P in the new coordinate system (R', N') equals to (R+ l, N+ l). α is the
angle between a simplified soil line (Y=X) and the SAVI/SASR isoline, PE. β describes a
line across E deviating from the soil line in the clockwise direction, varying between 0
and π/4. γ is the angle between PE and the Red' axis.
constant, l, to the red and NIR reflectance values, i.e. N' =N+ l, and
R' =R+ l, such that the simple ratio (SR) and NDVI become

NV
RV

¼ N þ l
Rþ l

ð4Þ

and

NV−R′
NVþ RV

¼ N−R
N þ Rþ 2l

; ð5Þ

respectively (Huete, 1988). In order to maintain the amplitude of
Eq. (5) as that of NDVI, a gain, (1+L), is multiplied to Eq. (5), such that
the SAVI equation is obtained (Eq. (2)), where L=2l. In this paper,
Eq. (4) is denoted as a soil-adjusted SR (SASR). The L value is usually
determined as 0.5 and thus l=0.25.

Fig. 2 presents the relationships betweenSAVI, SASRandEVI generated
from high quality assurance (QA) MODIS data, i.e., atmosphere-corrected
pixels with initially low aerosol quantities (the description of these data is
in Section 4.1). Since the three indices are soil-adjusted VIs, SAVI and SASR
are related to EVI very well, with small EVI variations corresponding to
each SAVI and SASR values. These variations are mostly caused by the
variation of the blue band since EVI values depend on the blue reflectance
in addition to the red and NIR reflectances. However, both VIs are not
linearly related to EVI across all vegetation density levels.When EVI is less
than 0.5, the values of SAVI are similar to EVI values, but SAVI become less
sensitive than EVI overmore highly vegetated regions. In contrast, SASR is
more sensitive than EVI when EVI is larger than 0.3.

Recently, Jiang et al. (2006b) showed that many vegetation indices
are functions of spectral angles related to their VI isolines in NIR-red
reflectance space, and SAVI can be expressed as,

SAVI ¼ 1þ Lð Þ tan αð Þ ð6Þ

where α is the angle between the simplified soil line and a SAVI isoline
as indicated in Fig. 1. So α can be expressed by,

α ¼ arctan SAVI= 1þ Lð Þð Þ ð7Þ

The SASR also can be expressed as a tangent function of angles,

SASR ¼ tan γð Þ ¼ tan α þ π=4ð Þ ð8Þ

where γ is the angle between a SASR isoline (same as the SAVI isoline)
and the horizontal red' axis (Fig. 1). Thus the relationship between
SAVI and the SASR is

SASR ¼ tan arctan SAVI= 1þ Lð Þð Þ þ π=4½ � ð9Þ
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The SASR is a non-linear transform of SAVI, through which the
convex SAVI–EVI relationship is converted to the concave SASR–EVI
relationship (Fig. 2). A linear vegetation index (LVI) comparable to EVI
can be obtained by adjusting the constant angle π/4 to a variable angle
β in Eq. (9),

LVI βð Þ ¼ tan arctan SAVI= 1þ Lð Þð Þ þ β½ � ð10Þ

where β describes a line across E deviating from the soil line in the
clockwise direction in Fig. 1. LVI is equivalent to SASR when β=π/4,
and equivalent to SAVI when β=0. The LVI value of the soil line, Y=X,
(LVI0, corresponding to α=0) is

LVI0 ¼ tan βð Þ ð11Þ

By subtracting LVI0 from Eq. (10) and multiplying a gain, G', in
order to maintain the amplitude of LVI as that of EVI, LVI becomes
(Appendix A)

LVI ¼ GVtan α þ βð Þ− tanβ½ � ¼ G
N−R

N þ R tan π=4þ βð Þ þ L= 1− tanβð Þ ð12Þ

where

G ¼ GVsec2β
1− tanβð Þ ð12� 1Þ

β acts as a linearity-adjustment factor since the linearization of LVI
with respect to a VI or a biophysical parameter can be achieved by
adjusting the value of this angle. With optimal L, β and G, the
differences between the LVI values and the EVI values would be very
small when atmospheric effects are insignificant and no snow/ice and
residual cloud are present in pixels, and this optimal LVI is denoted as
the 2-band EVI, i.e. EVI2 in this paper.

An alternativemethod to develop EVI2, rather than based on LVI, is to
decompose the EVI equation (Eq. (3)) into a 2-band EVI by relating the
blue band to the red band. Using the airborne visible-infrared imaging
spectrometer (AVIRIS) data, Clevers (1999) foundvisible bands arehighly
related to each other over agriculture fields. Kaufman et al. (1997) and
Karnieli et al. (2001) found that under clear sky conditions, the SWIR
spectral bands are highly correlatedwith thevisible (blue, green and red)
spectral bands over various land covers. So the visible bands should be
highly correlated to each other, enabling the blue reflectance to be
expressed as a function of the red reflectance at the ground level. By
simply assuming the relationship, Red=c×Blue, the EVI equation can be
reduced to a 2-band EVI using the L, C1, and C2 values mentioned above,

EVI2 ¼ G
N−R

N þ 6−7:5=cð ÞRþ 1
ð13Þ

where G is to be determined according to the c value. It should be
noted that c derived by fitting the blue reflectance to the red
reflectancemight not necessarily be the same as that derived by fitting
EVI2 to EVI since NIR reflectances are involved in fitting EVI2 to EVI
but not used to relating the blue reflectance to the red reflectance.

4. Data and methods

4.1. Data for EVI2 calibration

4.1.1. Site choice
MODIS data over 40 globally distributed sites, representing a wide

variety of land cover conditions are used to derive optimal parameters
for EVI2. These sites include 19 Earth Observation System (EOS) Land
Validation core sites (http://landval.gsfc.nasa.gov), 19 Ameriflux tower
sites (http://public.ornl.gov/ ameriflux/), and 2 additional, sparsely
vegetated sites to obtain a full representation of land surfaces. The
sites represent a wide range of fairly homogeneous land cover types at
scales consistent with satellite observations, and with a well-
documented history of in situ measurements and canopy character-
ization (Morisette et al., 2002).

The EOS Land Validation Core Sites were primarily designed to aid
in satellite land product validation over a wide range of biome types,
and provide in situmeasurements as well as aircraft data in support of
EOS instruments and long-term satellite measurements (Morisette
et al., 2002). Ameriflux is part of FLUXNET, a global network of
micrometeorological sites providing continuous measurements of
water vapor and carbon dioxide fluxes between atmosphere and
terrestrial ecosystems. This network also provides ecological site data
and remote sensing products.

The two other sites, Tinga Tingana, Australia and Tshane, Botswana,
are characterized by sparse vegetation andwere chosen to encompass a
complete range of land surfaces and corresponding optical properties,
red and NIR reflectances, and brightness values. The Tinga Tingana
region lies within the Strzelecki Desert in South Australia and was used
as an EO-1 Hyperion validation site (http://hl2.bgu.ac.il/users/www/
9451/HIS/HIS/Hyperion.htm). This site consists of light colored sand
duneswith less than 5% vegetation (Mitchell et al.,1997). Tshane is a test
site of the Southern African Regional Science Initiative Project (SAFARI
2000) (http://www-eosdis.ornl.gov/S2K/safari.html) and a land product
validation (LPV) site of the Committee on Earth Observing Satellites
(CEOS) (http://lpvs.gsfc.nasa.gov/LPV_CS_gen.php). This site is located
approximately 15 km south of Tshane, Botswana and has a vegetation
cover of open savanna dominated by Acacia luederitzii and A. mellifera
with an overstory height of about 7 m (Privette et al., 2002).

4.1.2. Data extracts
MODIS 1 km, 16-day composite Vegetation Index product

(MOD13A2), from Collection 4 and the Terra platform, are extracted
over the 40 sites, from 18 February 2000 to 19 December 2005. The
MODIS standard VI products include two, gridded vegetation indices
(NDVI, EVI), product quality assessment (QA), input red (band 1), near-
infrared (NIR) (band 2), blue (band 3), and middle-infrared (MIR)
(band 7) reflectances, and sensor view, solar zenith and relative
azimuth angles for each pixel (Huete et al., 2002). A window of
3×3 pixels, centered on the location of each site, is used to extract red,
NIR and blue reflectances over each site. Only good quality pixels are
used to generate the average reflectances of each window, fromwhich
the VI values are calculated for each site at 16-day intervals. Good
quality pixels are defined as thosewith VI usefulness index ≤0010 (i.e.,
the best 3 levels among 16 quality assurance (QA) levels), aerosol
quantity ≤01 (lowaerosol quantity), nomixed clouds, no snow/ice, and
no cloud shadow (http://edcdaac.usgs.gov/modis/moyd13_qa_v4.asp).
Spatially average reflectances are computed for each site and for each
composite period, only when the number of good quality pixels in a
3×3 subset was larger than or equal to 5. In total, 2898measurements,
or 54% of the 5400 (135 composites for each site) original measure-
ments are of acceptable QA and used in the determination of the
optimal parameters in the EVI2 equations (Eqs. (12) and (13)).

4.2. Data for evaluation of EVI–EVI2 consistency

In order to evaluate the similarities between EVI2 and EVI globally,
a one-year globalMODIS 1 km,16-daycomposite dataset (collection 5),
from Feb. 18, 2000 to Feb. 18, 2001, including 24 global composites, are
analyzed. In addition, 13 globally distributed EOS land validation core
sites, different from the 40 sites used in the optimization of EVI2
parameters, including a range of biomes are selected for local scale
comparisons and evaluation of the different VI time series (http://
landval.gsfc.nasa.gov/). An average intra-annual profile of QA-accepted
VI values from2000 to 2006 is generated for EVI, EVI2, andNDVI, based
on average reflectances of 3 by 3 pixels at each site. The latest
reprocessed MODIS data (collection 5) is not significantly different
from the previous version (collection 4), with primary differences
associated with improvements to the lower quality data (e.g., aerosol

http://landval.gsfc.nasa.gov
http://public.ornl.gov/ameriflux/
http://hl2.bgu.ac.il/users/www/9451/HIS/HIS/Hyperion.htm
http://hl2.bgu.ac.il/users/www/9451/HIS/HIS/Hyperion.htm
http://www-eosdis.ornl.gov/S2K/safari.html
http://lpvs.gsfc.nasa.gov/LPV_CS_gen.php
http://edcdaac.usgs.gov/modis/moyd13_qa_v4.asp
http://landval.gsfc.nasa.gov/
http://landval.gsfc.nasa.gov/


Fig. 3. QA-accepted, 16-day composite red and NIR reflectances over the 40 study sites
from 18 February 2000 to 19 December 2005.

Fig. 4. QA-accepted, 16-day composite blue and red reflectances over the 40 study sites
from 18 February 2000 to 19 December 2005.

Fig. 6. Themean absolute difference (MAD) between EVI and EVI2 as a function of β and
soil-adjustment factor (L) calculated with the optimal G as shown in Fig. 5.

Fig. 7. Coefficient of determination (R2) between EVI and EVI2 as a function of β and
soil-adjustment factor (L).
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quality and adjacent cloud filters). These improvements have none or
negligible effects on the good quality data extracted in this study and
the data consistency between collections 4 and 5 (Didan & Huete,
2006).
Fig. 5. Optimal G value in EVI2 as a function of β and soil-adjustment factor (L) to
maintain the amplitude of EVI2 comparable to that of EVI.
4.3. Methods

EVI2 should have the best similarity with the 3-band EVI when
atmospheric effects are insignificant and negligible, and no residual
Fig. 8.Mean absolute difference between EVI and EVI2 and the optimal G as functions of
the ratio of red to blue reflectances (c) (Eq. (13)).



Fig. 9. Comparison of global MODIS 1 km,16-day composite Vegetation Indices during Jul 27–Aug 11, 2000 (DOY 209–224) composite period, (a) EVI, (b) EVI2, (c) NDVI, (d) EVI2minus
EVI. The legends of (b) and (c) are the same as (a). Four yellow lines in (a) indicate the position of transects varying from sparsely to densely vegetated regions in four continents.
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Fig. 9 (continued).
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cloud and snow/ice are present in a pixel. The mean absolute
difference (MAD) between EVI and EVI2 is used as a measurement
of similarity,

MAD ¼ 1
n
∑
n

i¼1
jEVIi−EVI2ij ð14Þ

where n is the total number of measurements used here (2898) and i
denotes each measurement. For a given combination of L and β, there
is a single, optimal G that minimizes MAD between EVI and EVI2. A
dichotomy algorithm is used to search out an optimal G between 0
and 100 and then MAD is calculated with the optimal G and the given
L, β values. L is increased from 0 to 2 and β from 0 to 45° at increments
of 0.01, respectively. As shown in Fig. 1, β varies between 0 and π/4,
corresponding to two boundary cases, SAVI and SASR, respectively.
Then the minimum MAD, along with the corresponding optimal L, β
and G values, can be identified in the L–β space. The coefficient of
determination (R2) between EVI and EVI2 is used as a reference of
similarity since an optimal EVI2 should be linearly related to EVI,
which is also a function of β and L, but independent on G. Since MAD
takes the variations of L, β and G into account, it is used as the basis of
optimization/calibration.

For the decomposition method, there is an optimal G value for a
given c value, which minimizes MAD between EVI and EVI2 according
to Eq. (13). Thus, the optimal G and MAD are calculated as functions of
c and this enables the minimum MAD and corresponding G and c
values to be identified.

5. Calibration of EVI2

Fig. 3 shows all the QA-accepted, 16-day composite red and NIR
reflectances over the 40 study sites from 18 February 2000 to 19
December 2005. The reflectances encompassed awide range of values,
with red reflectances ranging from0.006 to 0.383 and NIR reflectances
from 0.098 to 0.490, which represents reflectances over most surface
conditions except snow. Awide range of soil background brightness is
included since (1) the 40 sites are selected globally ranging from wet,
densely vegetated areas to dry, bright desert areas and (2) various
fractions of soil background at each site can be observed temporally
over different seasons, particularly within agriculture, shrub, grass-
land, and deciduous forest sites.

The relationship between red and blue reflectances is highly
correlated (Fig. 4) (R2=0.96), described by a regression line of,
red=2.188×blue, which suggests that the blue band does not
contribute much additional information about the land surface than
the red band at the canopy level and when atmospheric effects are
insignificant. This provides a theoretical basis for deriving a 2-band
EVI without loss of significant information about the land surface,
relative to EVI, when atmospheric effects are insignificant.

When the values of L and β increase, the denominator of the EVI2
equation (Eq. (12)) increases and thus the amplitude of EVI2
decreases. By using the QA-accepted reflectances, as shown in
Figs. 3 and 4, an optimal G is searched out to achieve the minimum
MAD for each combination of L and β. The optimal G increases with
the increase of L and β to compensate for the loss of amplitude and
maintain the amplitude of EVI2 to that of EVI (Fig. 5). Then MAD
between EVI and EVI2 is computed as a function of L and β with the
optimal G for each combination of L and β (Fig. 6). MAD decreases
rapidly when L increases for 0 to 0.5, and increases for higher L. MAD
for SAVI at point β=0, L=0.5 in Fig. 6 is much smaller than MAD for
NDVI at point β=0, L=0. MAD also varies with β, with intermediate β
values resulting in a smaller MAD. The minimum MAD is achieved
when β=22.38° (tan(β)=7/17) and L=0.59. The G value corresponding
to the minimum MAD is 2.5. With the optimal parameter values, the
EVI2 equation (Eq. (12)) becomes

EVI2 ¼ 2:5
N−R

N þ 2:4Rþ 1
ð15Þ

The R2 between EVI and EVI2 increases rapidly when L increases
from 0 to 0.5, and then decreases for higher L values (Fig. 7). SAVI has a
much higher R2 with EVI than NDVI, and the resulting R2 between EVI
and EVI2 with the optimal parameters is 0.9986, very close to the
maximum R2 values, indicating a strong linear relationship between
these two indices.

According to Eq. (13), EVI2 can also be expressed as a function of the
ratio of red to blue reflectances, c. As shown in Fig. 8,MADbetween EVI
and EVI2 is minimum when c=2.08, with the corresponding G equal
to 2.5. The optimal c and G values render Eq. (13) to be the same as
Eq. (15),

EVI2 ¼ 2:5
N−R

N þ 6−7:5=2:08ð ÞRþ 1
¼ 2:5

N−R
N þ 2:4Rþ 1

Thus, the two alternative methods to develop the EVI2 equation
coincided and resulted in the same EVI2 equation (Eq. (15)).
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6. Evaluation of EVI–EVI2 consistency

6.1. Global comparisons

An example of EVI–EVI2 consistency on a global basis, evaluated
with the MODIS 1 km data, is shown in Fig. 9 using the Jul 27–Aug 11,
2000 (DOY 209–224) composite period when vegetation photosynth-
esis is most active in summer for the Northern Hemisphere. The global
EVI2 image exhibits similar values and spatial patterns of global
vegetation conditions as the EVI image (Fig. 9a, b), with both VIs
depicting eastern North America, northern South America, and parts
of the East Asia with the highest VI values, and Europe and North Asia
with intermediate VI values. The NDVI image is significantly different
from the EVI and EVI2 images as most NDVI values over vegetated
areas are very high, making it difficult to discriminate vegetation
differences in forested areas (Fig. 9c). The NDVI image also seems
greener than the EVI images over sparsely vegetated areas, such as the
southwest U.S., South Africa, Australia and central Asia, since NDVI
values are evidently larger than the EVI and EVI2 values over these
areas.

The overall difference between EVI and EVI2 is small, with most of
the difference between −0.02 and 0.02 (Fig. 9d). Over some tropical
areas, such as south Asia, the west coast of Africa, and South America,
EVI values are slightly larger than EVI2 values (∼0.03), possibly caused
Fig. 10. Comparison of MODIS EVI, EVI2 and NDVI histograms of the global images
shown in Fig. 9, (a) using global data, (b) using QA-accepted data. The sample interval of
VI values is 0.0050.

Fig. 11. Histograms of the difference between EVI and EVI2 over four composite periods
in difference seasons, (a) using global data, and (b) using QA-accepted data. The sample
interval is 0.0050. Each 16-day period is labeled by the beginning date of the period.
by the presence of residual mixed clouds in these areas, which result
in blue reflectance and EVI artifacts. In some parts of sparsely
vegetated desert areas, such as North Africa and central Australia, the
EVI2 values are slightly larger than EVI values (0.01–0.02), which are
caused by the higher blue/red ratios or c values (∼2.7) than the value
(2.08) used in the EVI2 equation (Eq. (13)).

Histograms of the global images (Fig. 9) for (1) all global data and
(2) only QA-accepted data cases are shown in Fig. 10. The global NDVI
histogram has two peaks, at 0.1 and 0.87. The rapid decrease in the
NDVI frequency beyond 0.87 can be explained by the saturation effects
of NDVI shown in Fig. 9c. In contrast, the histograms of global EVI and
EVI2 have one prominent peak, near 0.1, with a secondary peak at
0.38. The EVI and EVI2 frequencies distribute more normally than the
NDVI histogram with a more gradual decrease in frequencies from
0.84% at 0.38 to 0.01% at 0.79, allowing more distinct discrimination of
vegetated surfaces (Fig. 10a). The EVI frequency is slightly greater than
the EVI2 frequency for VI values larger than 0.4, and is slightly less
than the EVI2 frequency for VI values between 0.1 and 0.4. This
disagreement is caused by the relatively high blue reflectances in
pixels with aerosol, cloud, or snow. When only QA-accepted data are
used, the histograms of EVI and EVI2match very well, with onlyminor
disagreements between 0.06 and 0.21 (Fig. 10b). The peak of the EVI2
histogram shifts slightly to higher values compared with the peak of
the EVI histogram. These disagreements correspond to the slight
higher EVI2 values in some parts of sparsely vegetated desert areas,
such as North Africa and central Australia (Fig. 9d),
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Histograms of the difference between EVI and EVI2 (EVI2 minus
EVI) for all data and QA-accepted data cases, in four composite periods
representing difference seasons are shown in Fig. 11. The EVI2–EVI
differences, using all global data across four seasons, are mostly
between −0.06 and 0.02 (Fig. 11a). Seasonal variations in the EVI2–EVI
differences are insignificant with 88.8% of the differences within ±0.02
for the April composite period, and 84.7% for the July composite
period. On average, 87.4% of the differences are within ±0.02 in all 24
composite periods from Feb.18, 2000 to Feb.18, 2001, and 43.4% of the
differences occur in the interval centered at −0.0050, i.e. (−0.0075,
−0.0025). When only QA-accepted data are used, 99.2% of the
differences are between −0.02 and 0.02, on average, for all 24
composite periods, with the EVI2–EVI difference histograms almost
seasonally independent (Fig. 11b). 57.1% of the differences occur in the
interval centered at −0.0050. The modes of the difference histograms
indicate the amplitude of the EVI2 is slightly smaller than the
amplitude of EVI, on the order of 0.0050.

For the case of QA-accepted datawhere atmospheric influences are
insignificant and mixed clouds, snow and ice are excluded, the small
differences between EVI and EVI2 (within ±0.02) are attributed to the
intrinsic variation of the blue band over these land surfaces, to which
EVI responds. For the global case, 9.8% of pixels in the 24 global 16-day
composite images have EVI2–EVI differences between −0.06 and
−0.02 (Fig. 11a). These differences are not likely caused by intrinsic
Fig. 12. Transects of 1 km, 16-day composite MODIS EVI, EVI2, NDVI and EVI2 minus EVI for t
transect, (c) Africa transect, and (d) Eurasia transect. The legends of (b), (c) and (d) are the s
transect starts in the northwest side and ends in the southeast side. Different trends between
beginning of the Eurasia transect, and the corresponding red and NIR reflectances are plott
variations of the blue band over the land surface, but are mostly
attributed to the residual variations of atmospheric conditions
including aerosol and clouds or the presence of snow/ice at a subpixel
scale, since the intrinsic variation of blue band over snow/ice-free
surface is only responsible for EVI2–EVI differences within ±0.02. So
the seasonal variations of atmospheric conditions and snow/ice are
responsible for the seasonal variation of the EVI2–EVI differences. The
frequencies for EVI2–EVI differences larger than +0.02 are extremely
low for both the QA-accepted and whole global data cases since the
presence of aerosol/clouds and snow/ice can only increase the EVI
values relative to the more aerosol sensitive EVI2 values (Fig. 11).

6.2. Transect comparisons

In order to evaluate the spatial differences among EVI, NDVI and
EVI2 values, four continental-scale transects are sampled from the
global VI images, and their locations are shown in Fig. 9a. Each
transect includes sparse to densely vegetated regions to encompass a
wide range of VI values. The land cover of the North America transect
varies from grassland in the northwest, to woody savanna, withmixed
forest and deciduous broadleaf forest appearing at the end or
southeast portion of the transect. All of the vegetation indices increase
gradually from the grassland area to the forested portions of the
transect (Fig. 12a). The differences between EVI and EVI2 values are
he Jul 27–Aug 11, 2000 composite period. (a) North America transect, (b) South America
ame as (a). The locations of the four transects are shown in Fig. 9a by yellow lines. Each
the NDVI and EVI/EVI2 transects can be found at the end of the Africa transect and the

ed to show the different sensitivities of NDVI and EVI/EVI2 to red and NIR reflectances.
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generally small, except for a few pixels with differences exceeding
0.02. The South America transect encompasses wet evergreen broad-
leaf forests in the northwest part of the transect, to savannas and
mixed cropland in the southwest portion of the transect (Fig. 12b). The
differences between the two indices are very small across the transect,
mostly less than 0.005.

Differences between EVI and EVI2 are very small in the northern
part of the Africa transect, in the Sahara desert (Fig. 12c). The land
cover over the remaining transect varies gradually from grassland,
savanna, to woody savanna. The EVI2 values are evidently lower than
EVI values for certain locations along this transect. These differences
generally occur in cases when the ratio of red reflectance to blue
reflectance becomes closer to 1, indicating an abnormally stronger
blue signal, possibly caused by cloud or aerosols. The land cover of the
Eurasia transect changes frommixed forest towards the northwest, to
cropland in middle, and grassland in the southeast and the differences
between EVI and EVI2 are close to 0, except for a few pixels (Fig. 12d).

EVI2 generally tracks EVI very well within the four transects, while
NDVI has distinct profile differences relative to both EVIs (Fig. 12).
Towards the southern end of the Africa transect in the wooded
savanna, NDVI increases dramatically while EVI and EVI2 show no
apparent change or slight decrease (Fig. 12c). The increase of NDVI
Fig. 13. Comparisons among MODIS EVI, EVI2 and NDVI time series at EOS land validation
(Bondville and Grand Morin), mountain forest (Chang Bai Shan), and moist needleleaf fores
results from the slight decrease of the red reflectance from 0.06 to 0.03
since the NIR reflectance decreases also, from 0.33 to 0.25. In the
northern, mixed forest, portion of the Eurasia transect, EVI and EVI2
increase significantly as the NIR reflectance increases from 0.2 to 0.46,
while NDVI shows little variation and becomes saturated (Fig. 12d).
The different patterns and behavior of vegetation indices can be
explained by their relative sensitivities to red and NIR reflectances
since EVI is more sensitive to NIR reflectances while NDVI is very
sensitive to red reflectances (Huete et al., 1997).

6.3. Time series and site comparisons

The EVI2 time series agree well with EVI time series at all sites
(Fig.13). The EVI is slightly larger than EVI2 at the peaks of the growing
season at the Grand Morin and Chan Bai Shan sites. The NDVI profiles
are distinct from the EVI and EVI2 profiles over the sites. Differences
between NDVI and EVI are prominent at the Cascades/H.J. Andrews
LTER site consisting ofmoist needleleaf forest. The low red reflectances
at this site (∼0.01) result in high NDVI values, but EVI and EVI2 values
aremoderate since the NIR reflectance is low, at ∼0.2. The NDVI profile
shows larger annual variation than the EVI and EVI2 profiles at this site
due to the high sensitivity of NDVI to the red reflectance.
core sites. Vegetation types include grass (ARM CAR Shidler and Uardry NSW), crops
t (Cascades/H.J. Andrews LTER).



Fig. 14. Cross-plot of EVI2 and EVI using QA-accepted MODIS 1 km, 16-day composite VI
data over the 13 EOS Land Validation core sites from 2000 to 2006.
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A cross-plot of EVI2 and EVI using all QA-accepted MODIS VI data
over the 13 EOS Land Validation core sites shows a very close 1:1
relationship (Fig.14). The average EVI2–EVI difference is −0.0007, with
the MAD of 0.0050, indicating insignificant differences between EVI
and EVI2 for good quality observation conditions and across the wide
variety of land cover conditions analyzed here. The linear relationship
between EVI and EVI2 is a result of the moderate β value used in EVI2,
which is between that used in SAVI (β=0) and SASR (β=π/4) equations,
i.e., between the convex EVI–SAVI and concaveEVI–SASR relationships,
as shown in Fig. 2.

7. Discussion

Although EVI, a feedback-based soil and atmospheric resistant
vegetation index, gained its heritage from SAVI and ARVI (Liu & Huete,
1995), it cannot be simply reduced to SAVI as a 2-band version of EVI
since SAVI is less sensitive to greenness than EVI in high biomass
regions as shown in Fig. 2. To enhance the sensitivity of SAVI in high
biomass regions, a linearity-adjustment factor, β, is proposed and
coupled with the soil-adjustment concept used in SAVI, resulting in
the linear vegetation index (LVI). EVI2 takes the formula of LVI, but
with optimized parameter values, obtained through calibration in the
two-dimension parameter (L–β) space, such that the mean absolute
difference between EVI and EVI2 is minimized using a global dataset
consisting of QA-accepted reflectances over 40 sites and 6 years of
MODIS VI, 16-day composites (Fig. 6). The 1:1 relationship between
EVI and EVI2 suggests that EVI2 not only has an improved sensitivity
over high biomass, relative to the SAVI, but also minimizes soil
influences as in EVI.

It should be noted that L, as used in EVI2 (0.59), is slightly different
from L in SAVI (0.5), indicating a discrepancy in the soil-adjustment
factors. However, this is not a serious conflict, since for any L from
0.25 to 1, the soil background influences are considerably reduced in
comparison to NDVI (case of L=0) and Perpendicular Vegetation
Index (PVI, case of LN100) (Huete, 1988). SAVI was developed with
only consideration of soil background influences. However, EVI was
developed with consideration of both soil background and atmo-
spheric influences. Several studies found the soil and atmospheric
influences couple and interact each other (Huete & Liu, 1994; Liu &
Huete, 1995). So, the differences in soil-adjustment factors adopted
by SAVI and EVI2 are mostly explained by soil-atmospheric interac-
tions, which are only taken into account by EVI. The L in the EVI
equation (Eq. (3)) should not be interpreted as an exclusive soil-
adjustment factor as the L in SAVI and LVI equations (Eqs. (2) and
(12)), since EVI handles soil and atmosphere interactions. This
interaction is decoupled in LVI equation, which shows the interaction
between L and β in the last term of the equation's denominator, i.e.
L / (1− tan(β)).

The alternative strategy for EVI2 development was to decompose
the original EVI equation to eliminate the blue band by assuming that
the blue reflectances can be expressed as a function of the red
reflectances. In fact, the decompositionmethod can be considered as a
special case of the LVI method. The optimization of c in Eq. (13) is
equivalent to the optimization of β in the LVI equation (Eq. (12)) under
the constraint, L=1− tan(β), which represents a curve in the L–β
space.

The choice of the parameter values used for EVI2 is dependent on
the average ratio of the red to blue band reflectances, and thus is partly
dependent on the spectral characteristics of the sensors. EVI2 is
developed here, based onMODIS data. For other sensors with different
red or blue spectral response functions, the average ratio of the red to
blue band may be different, so the relationship between EVI and EVI2
may vary slightly from one sensor to another.

The close relationship between EVI and EVI2 is associated with the
close and stable relationship between the red and blue reflectances
over terrestrial surfaces, when minimal atmospheric effects and no
snow and ice exist (Fig. 4). Since the blue band provides none or very
little additional biophysical information than the red band, EVI2,
without the blue band, can retain the merits of EVI, except for the
aerosol resistance function. Thus, larger differences (N0.02) between
EVI and EVI2 are mostly due to residual aerosol and cloud influences
that remain after atmosphere correction of MODIS data.

EVI2, in turn, can provide a reliable reference for EVI to assess the
atmospheric self-correction made by using a blue band in the EVI
equation. In this study, EVI appears useful in reducing atmosphere
influences on 9.8% of pixels globally, resulting in increases in the EVI
values mostly between 0.02 and 0.06, compared with the correspond-
ing EVI2 values. Generally, the spatial extent and frequency of
atmospheric self-corrections by EVI are fairly limited, partly due to
improvements in atmosphere corrections by the MODIS (MOD09)
surface reflectance product (Vermote et al., 2002), and by the MODIS
VI compositing algorithm which attempts to select the best observa-
tion within a 16-day period.

It is interesting that different, even opposite, patterns and behaviors
are observed between NDVI and EVI/EVI2 over woody savannas and
mixed forest (Fig. 12 c and d). Many studies found that NDVI becomes
saturated over highly vegetated areas and does not respond to variation
of NIR reflectances when the red reflectance is low (Carlson & Ripley,
1997; Gitelson, 2004;Huete et al.,1997;Wardlowet al., 2007). However,
EVI and EVI2 remain sensitive to variation of the NIR reflectances when
the red reflectance is low (Fig.12d). TheNDVI histogramshows a peak at
high NDVI values associated with saturation, but the EVI2 histogram is
more normally distributed (Fig. 10). These findings suggest that AVHRR
EVI2would reveal different vegetationdynamics in comparisonwith the
current AVHRR NDVI dataset especially when the red reflectance is low
and NDVI becomes saturated.

This study is based on 1-km resolution MODIS data. But the
justification and application of EVI2 is not limited to this resolution
since a wide range of reflectances is included and data of smaller
resolution should be within the reflectance range as shown in Figs. 3
and 4. As LVI can be calibrated to EVI, its linearity-adjustment
capability would enable the LVI to be coupled to specific vegetation
biophysical parameters, resulting in more linear relationships, parti-
cularly when remotely sensed data and the corresponding ground
biophysical parameters are measured together.
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8. Summary

In this study, a 2-band EVI without a blue band is developed and
evaluated using global-, land cover specific-, and local scaleMODIS data.
EVI2 can be used as an exact substitute of EVI for good observations, i.e.,
good QA pixels that contain no cloud or snow and are atmospherically
corrected over low aerosol quantity. The challenge in the development
of an EVI2 is not only to retain the soil-noise adjustment function, but
also to maintain the improved sensitivity and linearity in high biomass
regions (non-saturation) seen in EVI. To achieve these goals, the linear
vegetation index (LVI) was proposed, which incorporates the soil-
adjustment factor of SAVI with a linearity-adjustment factor, β. It is
through β, that the sensitivity of an index can be improved in high
biomass regions and become comparable with EVI, allowing the
relationship between EVI and LVI to become more linear.

The similarity between EVI and EVI2 was analyzed and validated at
the local and global scales. Global EVI2 images showvery similar patterns
as global EVI imagesand thedifferencesbetween themwere insignificant
using QA-acceptable data, with nearly all pixels within ±0.02. When
aerosol or residual clouds are present, EVI is generally larger than EVI2,
due to the aerosol resistance property of EVI. The consistency between
EVI and EVI2 across various land cover types demonstrated that their
similaritywas independent of land cover. Time series (temporal) analysis
further revealed their similarity was seasonally independent.

EVI2 can be used for sensors without a blue band, such as the
AVHRR and ASTER instruments, to produce an EVI-like vegetation
index, complementary to NDVI. Our findings suggest that an AVHRR-
based EVI2 may reveal different vegetation dynamics in comparison
with the current AVHRR NDVI dataset especially when red reflec-
tances are low and NDVI becomes saturated. The relationships and
continuity among EVI2 values derived from different sensors remain
to be studied. As MODIS NDVI is significantly higher than AVHRR NDVI
(Huete et al., 2002; Miura et al., 2006), the EVI2 of these two sensors
may also differ and cross-sensor calibration of reflectances should be
conducted before comparing an AVHRR EVI2 with MODIS EVI/EVI2.
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Appendix A

Derivation of LVI:

LVI ¼ GVtan α þ βð Þ− tanβ½ �
¼ GV

tanα þ tanα tan2β
1−tanα tanβ

¼ GVsec2β
tanα

1−tanα tanβ
ðA� 1Þ

According to Eqs. (5) and (6),

tanα ¼ N−R
N þ Rþ L

ðA� 2Þ

By substitute Eq. (A-2) into Eq. (A-1), LVI can be expressed as a
function of N and R.

LVI ¼ GVsec2 β
N−R

N 1− tanβð Þ þ R 1þ tanβð Þ þ L

¼ G
N−R

N þ Rtan π=4þ βð Þ þ L= 1− tanβð Þ
where

G ¼ GVsec2β
1−tanβ
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