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Abstract—Methods are developed and evaluated to retrieve
surface soil temperature information for the Advanced Microwave
Scanning Radiometer on Earth Observing System for seven
boreal forest and Arctic tundra biophysical monitoring sites across
Alaska and Northern Canada. A multiple-band iterative radia-
tive transfer process-based method producing dynamic vegetation
and snow cover correction quantities and an empirical multiple
regression method using several frequencies are employed. The
seasonal pattern of microwave emission and relative accuracy of
the soil temperature retrievals are influenced strongly by land-
scape properties, including the presence of open water, vegeta-
tion type and seasonal phenology, snow cover, and freeze–thaw
transitions. The retrieval of soil temperature is similar for the
two methods with an overall root-mean-square error of 3.1–3.9 K
during summer thawed conditions, with a larger error occurring
in winter during periods of dynamic snow cover and freeze–thaw
state. These results indicate that at high latitudes, the influence of
the atmosphere may be less important than that of surface con-
ditions in determining the relative accuracy of the estimated soil
temperature. Impacts of surface conditions on surface emissivity,
observed brightness temperature, and estimated soil temperature
are discussed.

Index Terms—Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E), Arctic tundra,
boreal forest, microwave radiometry, satellite remote sensing, soil
temperature.

I. INTRODUCTION

O BSERVATIONAL evidence indicates that mean annual
surface temperatures in Arctic and boreal regions have

warmed 2 ◦C to 4 ◦C in the last several decades [1]–[3].
Global model projections indicate that warming under fu-
ture climate change will be most pronounced in high-latitude
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regions [4], [5]. Warming is expected to alter the surface energy
balance and hydrologic systems, with resulting feedback to
climate [6]. High-latitude regions have a sparse network of
meteorological stations, which strongly limits capabilities for
regional monitoring of climate change. Accurate surface mete-
orological information also provides critical inputs for regional-
scale terrestrial and hydrological models. The largest error in
the Moderate Resolution Imaging Spectroradiometer (MODIS)
MOD17 terrestrial productivity products was introduced by
uncertainties in daily surface meteorology inputs [7]. The latest
generation of Earth Observing System (EOS) satellite remote-
sensing-based observations provides an unprecedented array of
global daily monitoring capabilities at moderate spatial reso-
lution, including multiband optical–infrared (IR) and passive
microwave-based measurements from MODIS and Advanced
Microwave Scanning Radiometer for the Earth Observing Sys-
tem (AMSR-E), respectively. These measurements are sensitive
to thermal and moisture characteristics of the land surface and
provide a potential alternative to spatially gridded meteoro-
logical data from sparse surface station networks and model
reanalyses for driving terrestrial ecosystem models.

Soil temperature is a crucial variable for characterizing the
surface energy balance, permafrost heating, and soil organic
matter decomposition, which is also a significant source of
high-latitude terrestrial carbon emissions (both CO2 and CH4)
to the atmosphere [6], [8], [9]. Satellite IR remote sens-
ing observations from the National Oceanic and Atmospheric
Administration Advanced Very High Resolution Radiometer
and National Aeronautics and Space Administration (NASA)
MODIS have been widely used for the retrieval of land surface
temperature information [10]–[12]. Satellite passive microwave
sensors such as the Special Sensor Microwave/Imager (SSM/I)
and Scanning Multichannel Microwave Radiometer have also
been used to retrieve land surface temperature [13]–[17].
Despite having a coarse spatial resolution (> 5 km) relative to
optical–IR remote sensing, longer wavelength microwave sen-
sors are less impacted by cloud cover, smoke, and atmospheric
aerosol effects and can retrieve surface information day or night
regardless of solar illumination conditions. This represents a
significant advantage over optical–IR remote sensing for re-
gional monitoring at high latitudes. Microwave emission at low
frequencies, e.g., C-band (∼6.9 GHz) and L-band (∼1.4 GHz),
responds to temperature conditions under vegetation and below
the soil surface, although direct sensitivity to these deeper
microwave emitting layers decreases under increasing vegeta-
tion water content and soil moisture levels [14]. The emitting
soil layer is shallower, and the vegetation opacity is greater
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TABLE I
BIOPHYSICAL NETWORK SITES USED FOR THIS INVESTIGATION. NSA NOBS REFERS TO THE NORTHERN STUDY AREA OLD BLACK SPRUCE,

AND SSA OAS REFERS TO THE SOUTHERN STUDY AREA OLD ASPEN TOWER SITES LOCATED WITHIN THE BOREAL

ECOSYSTEM–ATMOSPHERE STUDY (BOREAS) REGION OF CENTRAL CANADA. THESE SITES ARE CURRENTLY

ASSOCIATED WITH THE BOREAL ECOSYSTEM MONITORING AND RESEARCH SITES PROJECT

for higher frequency microwave observations. The emitting
depth is typically between 0.5 and 2.8 cm at C-band for soil
volumetric moisture contents of 10% and 50%, respectively,
assuming a soil bulk density of 1.50 g cm−3, which is typical of
tundra soils [14]. Frequencies of 10.7 GHz and lower may be
susceptible to radio frequency interference (RFI) near densely
populated areas depending on the bandwidth, center frequency,
and polarization of the anthropogenic radiation and character-
istics of the observing sensor [18], [19]; however, this may
not be a significant problem in sparsely populated high-latitude
regions. Passive microwave observations are also sensitive to
surface wetness [20]–[22], vegetation biomass [23]–[25], and
freeze–thaw state [26], [27].

Difficulty in retrieving surface temperature from the
SSM/I under snow-covered and open water surface condi-
tions over the central plains of the U.S. was reported by
McFarland et al. [13]. Many studies have since devised methods
for dealing with diverse land cover types. A spectral difference
method was applied to derive screen-height (2 m) air temper-
atures from the SSM/I over open water and snow cover in the
continental U.S. [16]. A polarization ratio method was applied
to retrieve soil temperatures from a tower-based radiometer
over a variety of land cover conditions in Switzerland [28] and
from SSM/I 19-GHz brightness temperatures under both frozen
and snow-covered winter surfaces [29]. This method was also
employed for surface temperature retrieval in the boreal forest
of Finland and was reported to have larger error over dense
vegetation than an empirical multiple-regression method [15].
A similar polarization ratio method was applied to retrieve sur-
face temperature and surface water fraction over wet Arctic and
boreal regions of northern Canada under snow-free conditions
[17]. Iterative inversion of radiative transfer equations has also
been used [15], as well as learning algorithms including neural
networks, which have been suggested for dealing with surface
heterogeneity [30]; both methods require either a great deal of
a priori information on land cover parameters or large training
data sets.

The objectives of the current investigation are: 1) to evaluate
the spatial and seasonal dynamics of multifrequency AMSR-
E brightness temperature data relative to surface biophysical
station observations of daily soil profile and air temperatures
and 2) to compare two alternate approaches to retrieve soil
temperature information from AMSR-E under temporally dy-
namic surface physical conditions and for boreal forest and
Arctic tundra biomes represented by seven monitoring sites.

We develop and apply two algorithms to retrieve surface
(< 5 cm) soil temperature over boreal forest, tundra, and grass-
land biomes of Alaska and Canada using the AMSR-E onboard
the NASA EOS Aqua satellite for future use in biophysical
modeling at high latitudes. Our approach employs in situ soil
temperature data for fitting parameters and assessing algorithm
performance; these data were collected at three Ameriflux,
three FLUXNET Canada eddy-covariance flux towers [31], and
one Kuparuk river basin site administered by the University of
Alaska Fairbanks Water and Environmental Research Center
[32], which is located in five distinct vegetation and land cover
regimes representing major boreal forest and Arctic tundra
biomes. The satellite data are from footprint extractions of
spatially resampled AMSR-E L2A orbital-swath data centered
at each tower location.

II. STUDY SITES AND DATA

A. Biophysical Network Sites

The seven study sites are representative of five distinct
vegetation types (Table I; Fig. 1). The vegetation types are
coastal lowland wet sedge tundra, upland tussock tundra, boreal
evergreen forest, boreal deciduous forest, and boreal grassland.
Tundra landscapes are generally a mosaic of tussock and sedge
tundra vegetation types; however, for convenience, the tundra
sites were grouped according to the dominant vegetation type.
Wet sedge tundra dominates in moist poorly drained lowland
and coastal areas, whereas tussock tundra dominates the drier
upland/foothill sites. Coastal wet sedge tundra is represented
by the Barrow (BRW) and Atqasuk (ATQ) sites and is charac-
terized by low topography and a shallow water table with nu-
merous thaw lakes. The vegetation is predominantly composed
of low-growing sedges and mosses, interspersed with areas of
shallow standing water. Soils are highly organic and consist
of a shallow active layer that thaws each growing season and
is underlain by continuous permafrost [33]. Wet sedge tundra
lacks the hummocky microtopography of tussock tundra but
may contain polygonal features formed by frost-wedge action,
which consist of flat surfaces surrounded by shallow troughs.
Tussock tundra at Ivotuk (IVO) and Happy Valley (HPV) is
characterized by Eriophorum vaginatum, which is also known
as “cotton grass,” and low shrubs [34]. These two sites are
located within ∼40 km of the Brooks Range, and the soil active
layer tends to be thicker than that of coastal sites [35].
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Fig. 1. Biophysical network sites.

TABLE II
AMSR-E INSTRUMENT SPECIFICATIONS

The boreal sites are located in Central Canada. Boreal
evergreen coniferous forest is represented by the Northern
Old Black Spruce (NOBS) site and is dominated by mature
black spruce (Picea marianna) forest with a canopy height of
10–13 m and low topographic relief [36]. The Old Aspen
(OAS) site is composed of deciduous broad-leaf boreal forest
dominated by aspen (Populus tremuloides) with a mean canopy
height of 21 m and low topographic relief [37]. The Lethbridge
(LTH) boreal grassland site is the southernmost study site and
is composed of semiarid short-grass prairie on relatively flat
terrain [38].

B. In Situ Observations

Soil temperatures were obtained from tower and hydro-
logic monitoring site investigators. Soil temperature data were
recorded at a variety of measurement depths at each location.
The 0- to 5-cm depth was selected as the primary focus of this
investigation because it was readily available across all study
sites. Although lower range of this depth is greater than the
expected microwave emitting depth of 2.5 cm at C-band or
less for higher frequencies and greater soil moisture levels [14],
we observed that daily temperature differences between near-
surface soil depths and daily minimum air temperatures (above
and below canopy for forested sites) are highly correlated
with brightness temperatures under all conditions (r > 0.70;
P < 0.001). For simplicity, we assumed that the near-surface
soil profile (e.g., < 5 cm) is generally isothermal. Vertical and
horizontal heterogeneity in soil temperature within and across
the field-of-view also potentially adds variability to the bright-
ness temperature observations. For this reason, we compare the
surface temperature retrievals to three independent measures
of the surface temperature. Comparison with Tsoil and Tmin

bracket the possible extremes in surface temperature, whereas
MODIS Land Surface Skin Temperature (LST) observations
are used to assess subgrid-scale spatial heterogeneity in sur-
face temperature conditions within the AMSR-E footprint. Soil

and air temperature measurements from the study sites were
reported at 30-min intervals and aggregated to daily minimums
for comparison with daily satellite morning (A.M.) overpass
observations. Daily minimums of soil temperature (5 cm) were
not significantly different (p > 0.05) from the temperature at
overpass time and the temperature at time of the minimum
temperature gradient between the 2- and 5-cm depths at all
sites. This assumption holds well for Arctic and boreal soils,
which have a large amount of thermal inertia relative to drier
midlatitude soils, which are subjected to more intense diurnal
heating. The in situ data were obtained from June 2002 to
December 2004 to coincide with AMSR-E observations, which
began with the launch of the Aqua satellite in May 2002.

C. Satellite Data

The AMSR-E flies on the Aqua satellite platform and mea-
sures brightness temperatures at frequencies of 6.9, 10.7, 18.7,
23.8, 36.5, and 89 GHz for vertical and horizontal polarizations
(Table II). Aqua is polar orbiting with 1 A.M./P.M. equatorial
crossing times, providing multiple daily acquisitions in polar
regions [39]. For high-latitude regions, the overlapping orbital
swaths allow two to four Tb observations per footprint overpass
with a typical standard deviation of ∼1 K (max = 5 K) at
6.9 GHz and < 1 K (max = 3.5 K) at 89 GHz. Tb mea-
surements were extracted at each test site from the AMSR-E
level 2A orbital swath data spatially resampled to the ∼60-km
6.9-GHz resolution [40]. The Tb observations were only ex-
tracted from sensor footprints whose centroid falls within 5 km
of each tower location. Therefore, the observations can be
considered to be representative of a ∼60-km pixel centered at
the tower location. The minimum Tb of the descending (A.M.)
overpass was selected on a daily basis for each site location
under the assumption that the diurnal temperature minimum
is more representative of surface soil layer temperatures. The
descending overpass occurs from 3 to 6 A.M. local time in
the study region and was chosen because the near-surface soil
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Fig. 2. Linear correlation between AMSR-E uncorrected Tbv values for various frequencies and in situminimum daily air temperature Tmin and soil temperature
Tsoil measurements for selected study sites. Note that the soil and air temperature measurement levels are different for each plot, as measurement depth differed
between each site.

and air temperatures were expected to be closer to thermal
equilibrium.

The brightness temperatures were inspected for RFI using
the difference between the 6.9- and 10.7-GHz channels and the
difference between the 10.7- and 18.7-GHz channels developed
by Njoku et al. [18]. For LTH, where RFI was expected to
be most severe, a mean thawed condition RFI index for the
6.9-GHz (10.7-GHz) band V-polarization of 0.51 K (−0.25 K)
and a standard deviation of 0.99 K (1.11 K) were calculated.
These values are well below the 3 K (6.9 GHz) and −0.25 K
(10.7 GHz) index thresholds suggested for identifying moderate
to strong RFI [18]. The H-polarization mean 6.9-GHz and
10.7-GHz RFI indexes were similarly small (0.14 K for
6.9 GHz and 0.14 K at 10.7 GHz) at LTH. The RFI index for the
6.9-GHz band did range as high as 9.0 K for frozen conditions,
but these are assumed to be the effects of snow cover and
not of RFI. These results indicate that moderate RFI was not
detected in either the 6.9-GHz or the 10.7-GHz channel at H- or
V-polarization at the study sites, and filtering of the brightness
temperatures for RFI was not necessary.

Land cover heterogeneity within each AMSR-E tower foot-
print was assessed by extracting 60 × 60 km windows centered
on each tower site from the MODIS 1-km resolution global land
cover classification [41]. The MODIS land cover extraction
subsets were obtained from the Oak Ridge National Laboratory
Distributed Active Archive Center [42]. Relative proportions
of the International Geosphere–Biosphere Program-based land
cover classes were calculated from the MODIS land cover
classification results within each window.

D. Land Cover Effects on the Correlation of Tb to
In Situ Temperatures

The MODIS land cover windows indicated that BRW and
ATQ had the greatest amount of open water with 87% and
12% respective coverage. The other sites had < 6% open water.
Tundra vegetation at BRW, ATQ, IVO, and HPV was classified
as open shrubland, which varied in areal extent from 9% at
BRW to 97% at HPV, and as grassland, which varied in extent
from 25% at ATQ to < 3% at the other tundra sites. Grassland
coverage was dominant at LTH (56%), followed by cropland
(41%). Evergreen needleleaved forest was dominant at NOBS
(77%) but was also present at OAS (15%). The OAS window
also had significant proportions of mixed forest (36%) and
croplands (39%). Urban areas were present at LTH and NOBS
but represented < 1% of the total window area.

Land cover is expected to influence the correlation between
Tb and physical surface temperature by shifting the soil and
vegetation layers in which the physical temperature contributes
most strongly to the bulk signal and by modifying the over-
all emissivity of the scene. Therefore, simple linear corre-
lation coefficients were computed between daily time series
AMSR-E V-polarized Tb and available in situ soil and near-
surface air temperature measurements under thawed conditions
to gain an understanding of the relation between sensor Tb

from individual bands and the surface temperature profile for
each study site (Fig. 2). Previous studies have shown that
V-polarized Tb is generally more sensitive to surface tem-
perature than H-polarized Tb [13], [14], presumably because
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Fig. 3. AMSR-E 6.9-GHz V- and H-polarized brightness temperatures over selected study sites from 2002 to 2004.

V-polarization is less influenced by soil moisture, open water,
and scattering.

The correlation between Tb and shallow (< 20 cm) soil
temperatures was greater than 0.75 for all AMSR-E spectral
bands for sites without significant open water, as defined
from the MODIS land cover windows. The higher frequencies
(23.8–89 GHz) were well correlated (r ≥ 0.70; P < 0.001)
with in situ temperature observations for all soil depths ≤ 22 cm
in both forested and nonforested sites. The highest correlations
were observed at the 89-GHz band, which was somewhat
surprising considering expected greater sensitivity to the at-
mosphere; however, precipitable water and cloud liquid water
content influence atmospheric opacity and emission at 89 GHz
and also tend to be correlated with surface temperature and
tropospheric lapse rates. A similar analysis was conducted
over Finland [15] and found that the 85-GHz channel from
the SSM/I showed lower correspondence with surface tem-
perature relative to 37 GHz. The AMSR-E lower frequencies
(≤ 18.7 GHz) showed significant but generally lower corre-
spondence (r ≥ 0.65; P < 0.001) with air and soil tempera-
tures for all sites.

In nonforested locations [Fig. 2(a) and (b)], the AMSR-E
brightness temperatures showed greater correspondence to
shallow (< 20 cm) soil temperatures (r = 0.80−0.91) than
minimum daily air temperatures (r = 0.65−0.85); however,
in forested locations [Fig. 2(c) and (d)], the brightness tem-
peratures corresponded more closely to minimum daily air
temperatures (r = 0.91−0.95) than soil temperatures (r =
0.75−0.90). Differences in Tb correlations with minimum air
temperatures measured above and below the OAS forest canopy
were small, whereas both were greater than correlations with
site soil temperatures. The greater correspondence between Tb

and air temperatures is due to the larger vegetation contribution
to bulk surface microwave emission at the forested sites and soil
temperatures insulated from below canopy air temperatures by
additional leaf litter and a thicker humus layer.

Sites such as BRW, with a relatively large proportion of
open water within the sensor footprint, showed a negative
correlation between Tb and surface temperatures. The response
was attributed to emissivity reductions from surface water. An
increase in surface temperature leads to a decrease in Tb, where
ice is melted to form liquid water. This precludes the use of a
time-invariant emissivity parameter, particularly over sites with

soil moisture variability and open water [19]. Open water also
increases polarization ratio most strongly at lower frequencies,
as indicated by the seasonal fluctuation of open water surface
at BRW (Fig. 3), whereas over vegetation, such as grassland at
LTH, the difference between H and V brightness temperatures
shows a decreasing trend during the growing season, which is
possibly the result of an increase in the depolarizing properties
of a developing leaf canopy (Fig. 3). The polarization difference
thereby provides a way in which the emissivity can be corrected
for open water and soil moisture, but the influence of absorption
and scattering by vegetation and winter snow layers over frozen
ground must be taken into account.

III. ALGORITHM FORMULATION

A. Process-Based Approach

The aim of the process-based method is to reduce the dimen-
sionality of the surface temperature problem by exploiting the
expected frequency dependence of AMSR-E brightness tem-
peratures Tb to geophysical variables influencing the surface
emissivity. This approach uses empirical parameters describing
the frequency dependence of geophysical parameters within
simplified radiative transfer models. In addition to surface
temperature, auxiliary parameters including vegetation water
content/roughness equivalent and snow water equivalent are si-
multaneously produced. The method assumes that the retrieved
surface temperature and auxiliary parameters represent linear
spatial averages within the AMSR-E footprint.

The brightness temperature at polarization p (e.g., Tbp) of an
object can be described as the product of the object’s physical
temperature Ts and its apparent emissivity ep, i.e.,

Tbp = epTs. (1)

Equation (1) is a simplified expression for a single verti-
cally isothermal semi-infinite emitting layer. For nonisother-
mal conditions, the physical temperature can be defined as a
weighted average across the emitting layer and the sensor field-
of-view. The emissivity is related to the viewing angle and the
complex dielectric constant, which varies with soil moisture
for a smooth surface–atmosphere interface, by the Fresnel
coefficients. The atmosphere influences Tbp in (1) by absorbing
or scattering (in the case of precipitation) the emitted radiation



JONES et al.: SATELLITE REMOTE SENSING OF BOREAL AND ARCTIC SOIL TEMPERATURES FROM AMSR-E 2009

Fig. 4. Observed AMSR-E Tbh versus Tbv relations at the study sites. The R2 statistic indicates the level of linear correlation between Tbh versus Tbv at BRW
for each frequency. The black straight line represents the appropriate a and b parameters from Table III and the mean summer Tsoil at BRW. The dashed straight
line represents a 1 : 1 relationship.

Fig. 5. Theoretical spectral dependence of Tbh and Tbv using the vegetation emission model represented by (5) in the absence of scaling effects. The region
bounded by the curved lines marks the expected location of data points for Ts = 261−300 K, soil moisture mv = 1% to 40%, and g = 0 (solid gray curves)
and g = 4 kg/m2 (dashed black curves). The black straight line represents the a and b parameters used to approximate (5) with scaling effects in the retrieval (6)
and are equivalent to the black line in Fig. 4. The dashed line is the 1 : 1 line as in Fig. 4.

and contributing additional thermal emission. For simplicity,
this investigation does not explicitly account for the influence of
the atmosphere, under the assumption that changes in apparent
surface emissivity generally have a much stronger influence
than the atmosphere over the study region even at higher fre-
quencies. The high correlation with observed soil temperatures
and observations from a ground-based radiometer on the north
slope of Alaska [43] indicates that this is a reasonable first-order
assumption.

Apparent emissivities at H- and V-polarizations were linearly
related by empirical parameters a and b across large areas at
high latitudes [17], i.e.,

ev = aeh + b. (2)

This relation was used for surface temperature and water
fraction retrieval in sub-Arctic areas [17]. Similarly, AMSR-E
Tb observations over our sites similarly show a linear trend
(Fig. 4). Expressed in terms of surface temperature Ts, (2)
becomes

Tbv = aTbh + bTs. (3)

The Fresnel coefficients show a nonlinear relation between
eh and ev with changes in the surface dielectric constant
(Fig. 5). In atmospheric window channels, one would expect
Tbh and Tbv to also closely follow this relation for specular flat
homogenous surfaces. However, most terrestrial satellite pixels
represent heterogeneous mixtures of emissivities that change



2010 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 7, JULY 2007

TABLE III
CONSTANT PARAMETERS CALIBRATED TO THE BRW SITE FOR THE

PROCESS-BASED METHOD. THE α VALUES WERE OBTAINED USING A

FREQUENCY POWER RELATION [25]. THE VALUES FOR a AND b
ARE ALSO GIVEN FOR FROZEN CONDITIONS (Asn AND Bsn)

over time and therefore produce linear trends between Tbh and
Tbv among pixels and over time within each pixel [44]. This is
because each satellite footprint represents a weighted average
of the emissivities composing it, and the emissivities of each
land cover fraction have a probability distribution that shifts
over time. In Arctic regions during summer, this means that
eh and ev will vary linearly between the emissivity of open
water (approximately 0.57 for pure water at 20 ◦C observed
at 6.9-GHz V-polarization) to that of dense vegetation over dry
soil (approaching unity at V-polarization and slightly less than
unity at H-polarization). A linear trend can therefore be fit to
effective eh and ev data scatters to describe the expected change
in emissivity with changes in the difference between observed
Tbh and Tbv. BRW was used as a calibration site for a and
b over quasi-specular surfaces, due to locally large swings in
emissivity in response to the annual cycle of sea ice formation
and retreat occurring within the BRW tower window. Although
BRW is not an ideal calibration location because it contains
some vegetation during summer and some snow during winter,
the large amount of open water and relatively shallow snow
pack reduces the overall impact of vegetation and snow on the
calibration. During winter, the slope a of the calibrated H–V
relation decreased relative to its summer value, whereas the
intercept b increased relative to its summer value at sites with
little vegetation.

An examination of Tb over the tower locations indicates that
during both summer and winter, a and b have a dependence
on vegetation density that appears to shift apparent a toward
unity and b toward zero from their typical thawed condition
values that are reported in Table III (Fig. 6). Whereas higher
frequencies (> 18.7 GHz) saturate quickly with even small
amounts of vegetation, the lower bands (≤ 18.7 GHz) have a
greater sensitivity to surface dielectric constant and therefore
have a greater dynamic range of response to an overlying layer
masking the surface. Winter snow has a similar impact on the
apparent eh and ev relation, but the influence increases with
frequency due to volume scattering within the snow pack.
1) Vegetation Radiative Transfer: Assuming that the surface

temperature is equivalent to the canopy temperature, Tb that is
observed from a vegetated surface can be expressed as

Tbp = Ts {esp exp(−τc) + (1 − ωp) [1 − exp(−τc)]
× [1 + rsp exp(−τc)]} . (4)

The soil emissivity esp is equal to 1 − rsp, where rsp is
the reflectivity. The vegetation transmittance τc accounts for

Fig. 6. Apparent slope parameter a derived by fitting (2) to the eh versus
ev emissivity relation (2) at each site for each AMSR-E frequency. Maximum
annual MODIS LAI for the dominant vegetation type is on the secondary
y-axis.

the absorption of the upwelling signal by the canopy. The
single scattering albedo ωp accounts for radiation scattered by
the canopy in the forward direction. Over dense vegetation,
particularly at frequencies > 18.7 GHz, the soil contribu-
tion becomes entirely masked, and (4) effectively reduces to
Tbp = Ts(1 − ωp) [45]. If ωp is assumed to be negligible, (4)
becomes [25]

Tbp = Ts [1 − rsp exp (−α(f)g)] (5)

where τc is rewritten in terms of a frequency-dependent pa-
rameter α(f) and a vegetation/roughness quantity g (in kilo-
grams per square meter). Values for α(f) were determined by
extending the exponential relationship presented in [25]. By
inserting (5) into (3) and solving for the surface temperature,
we arrive at

Ts =(Tbv− aTbh)/ [1 − a − γ + exp(−αg)(b − 1 + a + γ)] .
(6)

The empirical parameter γ is added to adjust the value of the
denominator where the vegetation opacity becomes saturated.
This parameter was set to a constant value of 0.012 and is
added to partially account for extinction due to scattering and
the exclusion in ωp (4). As can be seen from (6) and (3), if
the effect of vegetation is the same at both polarizations, the
influence of vegetation is entirely by modifying the intercept
b. This confirms that the apparent shift in the slope a with
vegetation is caused by reduced sensitivity to the quasi-specular
wet soil emission. The quantity g is an additional unknown and
is determined using an iterative technique.
2) Snow Pack Radiative Transfer: The brightness tempera-

ture from a snow pack can be simply represented as a single
scattering and attenuating layer, i.e.,

Tbp = Ts [(1 − ωsn) (1 − exp(−τsn))+ esp exp(−τsn)] . (7)

The term (1 − ωsn)(1 − exp(−τsn)) represents the thermal
emission of the snow pack with single scattering albedo (ωsn)
and transmittance (τsn), whereas the term esp exp(−τsn) repre-
sents radiation emitted by the underlying frozen ground surface.
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TABLE IV
COEFFICIENTS (STANDARD ERRORS) FIT TO THE MULTIBAND MULTIPLE-REGRESSION EQUATION IN (12)

The physical temperature of the snow pack profile is assumed
isothermal and equivalent in temperature to the underlying soil.
The transmissivity and reflection at the snow pack interfaces, as
well as multiple scattering, are assumed to be negligible. The
snow pack transmittance can be represented by [46]

τsn = exp (−bsnW sec(θ)/λ) . (8)

In (8), the parameter bsn is set constant at 0.025, W repre-
sents the “water equivalent” of the snow pack (in centimeters),
θ is the AMSR-E incidence angle, and λ is the free-space
wavelength (in centimeters). W should be simply interpreted
as a snow signal that includes the combined influence of snow
pack water content, particle size, and total snow depth. As the
purpose of this paper is surface temperature determination, an
effort was not made to define W in terms of actual snow water
equivalent, as in other studies [29]. By inserting (8) into (7) and
combining with (6) and solving for surface temperature as in
(6), the snow pack expression becomes

Ts = (Tbv − aTbh)/ {B + exp(−αg)[exp(−τsn)

× [(1 − a)(1 − ωsn) + b exp(−τsn)B]} (9)

where B = 1 − a − γ. Like g, the quantity W is an additional
unknown and is determined using an iterative technique (8).
3) Iterative Solution for Surface Temperature: The radiative

transfer equations (6) and (9) use a constrained 1-D iterative
minimization technique to solve for one of the auxiliary quan-
tities g and W with Ts while holding the other parameter
(g or W ) constant. The quantities g and W were bracketed
within expected bounds (0–6 kg/m2 and 0–10 cm, respectively).
The physical temperature sensed by adjacent spectral bands is
expected to be similar; thus, the weighted sum of squares of the
pairwise differences between the surface temperature estimated
between adjacent bands was used as the cost function Cf , i.e.,

Cf =
N∑

k=2

{[
T̂s(k) − T̂s(k − 1)

]
/σ(k)

}2

(10)

where T̂s(k) denotes the surface temperature estimated at band
(k − 1), and σ(k) is the weight for the kth comparison summed
over N bands. A golden section search with parabolic interpo-
lation was used to minimize Cf . Surface temperature estimated
at each frequency minimized Cf , and the quantities g and W
were produced.

B. Multiple-Regression Approach

We employ a second empirical multiple-regression approach
for comparison against the previous process-based method.

This method follows the common practice of fitting multiple
regression coefficients to several Tb channels and to index
variables derived from those channels, such as the polarization
difference ratio ξ [13]–[16] is defined as

ζ = (Tbv − Tbh)/(Tbv + Tbh). (11)

Several frequencies and both H- and V-polarizations were
used to account for changing surface conditions that differ-
entially affect the emissivity at each channel. Index variables,
such as ζ and channel differences, can be further used to reduce
the number of parameters that must be fit [14]. Similar results
can be obtained by incorporating H-polarization brightness
temperatures in lieu of ζ. An advantage of this approach is
that information from several channels can be exploited without
more complicated physical derivations or numerical techniques.
A disadvantage of this approach is that it does not provide
more explicit information on surface conditions impacting the
retrieval and largely depends on trial and error for algorithm
improvement.

The multiple-regression algorithm was developed by step-
wise forward selection on a full frequency set containing all
bands of the V-polarized brightness temperatures and ζ values
for each band, as it was determined that the V-polarized bright-
ness temperatures alone could not well account for surface
wetness. The resulting equation was chosen when the root-
mean-square error (RMSE) of the estimate was not reduced
by more than 0.5 K and the R2 did not change significantly
with the addition of another parameter. The stepwise regression
yielded the following equation:

Ts = β0 + β1Tbv6 + β2Tbv10 + β3Tbv23 + β4Tbv89 + β5ζ89

(12)

where the β’s are the regression coefficients and are tabulated
in Table IV. Separate coefficients were developed for thawed
versus frozen conditions. The initial model fit to the training
data resulted in R2 = 0.77 and RMSE = 2.84 K for thawed
conditions and R2 = 0.46 and RMSE = 4.93 K for frozen
conditions.

The freeze–thaw transition was identified through a change
detection analysis of large (5–15 K) shifts in the AMSR-E
Tb time series, which were most pronounced at wet tundra
sites. Other satellite microwave remote sensing studies have
shown similar temporal behavior in microwave backscatter and
emission coinciding with temporal changes in land surface
dielectric properties such as the landscape transitions between
predominantly frozen and thawed conditions [47]–[49]. This
dynamic response is driven primarily by the distinct increase
in the bulk soil complex dielectric constant as water transitions
between solid and liquid phases, causing a jump from high
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Fig. 7. Scatter plot of 2004 thawed season retrievals for the regression and process-based AMSR-E Ts methods and associated statistics.

Fig. 8. Both methods of AMSR-E Ts retrievals (in degrees Celsius) plotted against Tsoil, Tmin, and MODIS LST at the study sites for 2004. MODIS LST error
bars represent the standard deviation of the 1-km resolution-based MODIS LST results within a 60-km window centered at each site.

to low emissivity that decreases both H- and V-polarized Tb

while increasing the polarization ratio, particularly at the lowest
frequencies (< 36.5 GHz), a response that dominates the Tb

signal for wet cold lands [27]. An accurate freeze–thaw clas-
sification can be readily automated by applying the methods
developed by McDonald et al. [26], although for this investi-
gation, we identified seasonal freeze–thaw transitions through
visual inspection of the AMSR-E time series data for each
site to account for this source of variability in the method
comparison.

C. Methods of Comparison

The in situ soil temperature data and corresponding daily
Tb values were divided into a set for developing algorithm
parameters and test set for evaluating algorithm performance.
Days with missing soil or brightness temperature data were
omitted from the analysis (10.8% of the entire test set). The
ATQ and IVO sites had relatively short-duration data sets; thus,
these whole data sets were included in only the test phase,
whereas for the other sites, the entire year 2004 was set aside
for algorithm testing. The remaining data for years 2002 and

2003 for five of the seven sites were used for fitting algorithm
parameters. Daily AMSR-E soil temperature Ts retrievals for
both retrieval methods under frozen and thawed conditions
were compared to the daily minimum soil Tsoil and air tem-
peratures Tmin. Additionally, MODIS Aqua nighttime LST
[50] 1-km resolution grid subsets [41] were extracted from
∼60-km windows centered at each tower site corresponding
to the AMSR-E L2A spatial resolution. Since MODIS and
AMSR-E are both located on Aqua, they have essentially
coincident observation times. The mean and standard deviation
of the 1-km resolution, eight-day MODIS LST results were
determined within each 60-km tower window and used as
a surrogate measure of subgrid-scale temperature variability
for the corresponding AMSR-E microwave-based temperature
retrievals.

IV. SURFACE TEMPERATURE RETRIEVAL

Figs. 7 and 8 show the results of the AMSR-E surface
temperature retrievals at the tower locations. The corresponding
statistical results are summarized in Tables V and VI. Both
methods are generally able to capture the annual cycles and
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TABLE V
THAWED CONDITION VALIDATION STATISTICS BY SITE FOR AMSR-E SURFACE TEMPERATURE METHODS. THE NUMBERS REPRESENT

COMPARISON OF RETRIEVED Ts VERSUS Tsoil (Tmin). R2, COEFFICIENT OF DETERMINATION; RMSE, ROOT-MEAN-SQUARE

ERROR; MAE, MEAN ABSOLUTE ERROR; MR, MEAN RESIDUAL (OBSERVED MINUS RETRIEVED); n, SAMPLE SIZE

TABLE VI
FROZEN CONDITION VALIDATION STATISTICS BY SITE FOR AMSR-E SURFACE TEMPERATURE METHODS. THE NUMBERS REPRESENT

COMPARISON OF RETRIEVED Ts VERSUS Tsoil (Tmin). R2, COEFFICIENT OF DETERMINATION; RMSE, ROOT-MEAN-SQUARE

ERROR; MAE, MEAN ABSOLUTE ERROR; MR, MEAN RESIDUAL (OBSERVED MINUS RETRIEVED); n, SAMPLE SIZE

daily variability of soil and air temperatures at each site. More
favorable results are obtained during the summer thawed season
relative to winter frozen conditions. The use of 89 GHz in
estimating Ts did not degrade the retrievals in either of the
AMSR-E Ts methods. The Ts results for the process-based
method for each frequency were nearly equivalent, where the
value of Cf was low.

Several instances of either systematic bias or anomalous
short-term spikes or dips in AMSR-E-retrieved Ts are worthy of
detailed discussion. Correspondence of AMSR-E Ts with Tsoil

and Tmin varied among sites, as the latitudinal range of the sites
presented different soil-to-air temperature gradients at each
location. Subpixel spatial heterogeneity was also a significant
factor for the microwave Ts retrievals. The freeze–thaw transi-
tion and snow during the winter season significantly impacted
winter retrievals. Land cover characteristics, such as open water
and vegetation phenology, presented a range of temporally
dynamic and spatially variant emissivities within and among
sites. The accuracy of the temperature retrievals under these
conditions indicates the skill of the retrieval method to account
for these dynamic effects.

A. Comparison to In Situ Air and Soil Temperatures and
MODIS LST

The process-based approach obtained lower errors at the
Arctic sites relative to the boreal locations, with the exception
of HPV (RMSE < 3 ◦C versus RMSE > 3 ◦C; Table V). This

demonstrates that the model correctly accounts for changes in
surface emissivity in response to open water surfaces, which
dominate regional land cover conditions at higher latitudes.
The regression method also performed well over the Arctic
tundra sites but had higher error at HPV. The somewhat poorer
performance of both methods for HPV relative to IVO, another
tussock tundra site, can be partially attributed to erroneous
predictions during the freeze–thaw transition, which were more
severe at HPV and partially attributed to a greater fractional
coverage of tussock tundra at HPV (97% open shrubland
and 1% barren ground versus 82% open shrubland and 13%
barren ground at IVO). For both the IVO and HPV tus-
sock sites, the regression method consistently overpredicted Ts

[mean residual (MR) = −3.71 K and −4.43 K, respectively].
The overestimation at the tussock sites was therefore attributed
to ζ, similar to forested sites, but the thermal gradient between
soil and canopy temperatures was much different than forested
sites, as shown in Section II and Fig. 2. IVO and HPV have
ζ that was more similar to the boreal forest sites than to the
grassland site LTH despite the short stature tussock tundra
vegetation. The summer minimum ζ at 6.9 GHz varied from
0.0107 at IVO, 0.0099 at HPV, 0.0112 at NOBS, and 0.0149 at
LTH. Anisotropy of tussock tundra has previously been noted
in [51]. The regression method had generally less bias over the
boreal sites relative to the process-based method. Much of the
bias can be explained by the near-surface soil-to-air temperature
gradient.
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Summer soil temperature observations at the high-latitude
Arctic sites were only slightly higher than the daily minimum
air temperatures. These daily temperature differences increased
for lower latitude boreal locations, with the greatest average dif-
ference of about 5 ◦C occurring during mid-summer conditions
at LTH. Maximum daily differences between Tsoil and Tmin de-
creased with increasing latitude and ranged from 24 ◦C for LTH
to 9.65 ◦C at BRW. These differences reflect stronger surface
heating and larger diurnal temperature gradients at drier, lower
latitude locations; these conditions impact the soil temperature
comparisons by increasing surface temperature spatial and ver-
tical heterogeneity, and decreasing the correspondence between
relatively coarse-scale AMSR-E-based Ts and in situ soil tem-
perature measurements. In contrast, reduced solar irradiance at
higher latitudes and the relatively large heat capacity of water
and enhanced latent energy transfer in areas with large amounts
of surface water moderates Tmin and Tsoil differences for tundra
sites. As a result, the AMSR-E process-based retrieval method
underpredicted soil temperatures at OAS and LTH relative to
in situ measurements (Table V). The bias is removed or re-
versed when the retrieval is compared to Tmin (Table V),
indicating the bias was mostly the result of the near-surface
soil-to-air temperature gradient and not assumptions in the
vegetation model. The underprediction was greatest with the
process-based approach relative to the regression method be-
cause the coefficients of the regression approach were tuned
to the soil temperature when the equation coefficients were
established.

The relatively coarse-scale AMSR-E results from the two
approaches are in general agreement with the footprint mean
LST derived from MODIS. MODIS LST shows that mean
surface skin temperatures within the AMSR-E field-of-view
generally correspond more closely to Tmin rather than to soil
temperature, due to the descending (morning) overpass time
and shallow penetration depth. At the tundra locations (BRW,
ATQ, and HPV), MODIS LST shows generally colder temper-
atures relative to Tmin and both AMSR-E Ts methods. The
standard deviation of the LST within each pixel ranges from
< 1 ◦C in winter to 11 ◦C during the fall freeze–thaw transition.
Summer season LST pixel standard deviations are ∼3.6 ◦C
at the Arctic sites and ∼2.7 ◦C at the boreal sites. These
values suggest that LST spatial heterogeneity within the tower
windows is on the order of the AMSR-E-based temperature
accuracy determined from pixel-to-point comparisons with in
situ observations during the thawed season.

B. Winter Retrievals and the Freeze–Thaw Transition

The onset of winter induces rapid changes in surface di-
electric properties during the transition to frozen conditions.
Soil-to-air temperature gradients and the accumulation of a
scattering snow pack are also important factors. It is therefore
not surprising that the AMSR-E-based temperature retrievals
significantly degrade during the winter months. A marked
increase in retrieval error during freeze–thaw transitions was
evident for the process-based method (Fig. 7). This error was
more severe during fall than in spring because the seasonal
thaw transition generally occurred rapidly, whereas the tran-
sition to seasonal frozen conditions was more gradual, with

multiple freeze–thaw events occurring over a relatively long
duration. The erroneously high temperature retrievals between
late September and early October at ATQ and HPV indicate
that this effect is strongest at tundra sites (Fig. 8). The rela-
tively simplistic freeze–thaw classification approach used for
this investigation does not account for spatial heterogeneity
or multiple freeze–thaw events occurring within the sensor
footprint. Also, freeze–thaw state varies within each ∼60-km
microwave footprint during the transition. An earlier study
on the north slope of Alaska compared tower-based 37 GHz
brightness temperatures and SSM/I observations, concluding
that the satellite- and ground-observed brightness temperatures
differ as a result of spatial heterogeneity in landscape dielectric
properties during the seasonal freeze–thaw transition [43].

Snow cover impacts the AMSR-E temperature retrievals of
both methods by insulating soil temperatures. As can be seen
in Fig. 8, the AMSR-E temperature retrievals correspond more
closely to minimum daily air temperatures and MODIS LSTs
than soil temperatures for sites under seasonal snow cover for
the process-based approach. A similar pattern is evident at
NOBS, where soil temperatures fluctuate near 0.0 ◦C, whereas
air temperatures range to as low as −40 ◦C. The positive bias
relative to in situ temperature measurements at BRW (MR =
−6.60 ◦C; Table VI) is also the result of the regression equation
representing an insulating snow pack that was present at most
of the other sites (Fig. 8).

C. Evaluation of Auxiliary Parameters From the
Process-Based Method

The accuracy of the process-based Ts retrieval under tem-
porally dynamic surface conditions indicates the skill of the
method to account for the effects of changing emissivities.
The assumption of a linear relation between Tbh and Tbv

accounts for changes in surface dielectric constant. As stated
earlier, this relationship is related to the scale of the microwave
observations over quasi-specular surfaces and appears to shift
with surface freeze–thaw state. Earlier studies have used this
relation for surface temperature retrieval at both site [29] and
regional scales [17]; however, the impact of the absorption
of quasi-specular surface emissions by vegetation and volume
scattering within snow pack required the use of simple radiative
transfer equations to describe the behavior of the polarization
difference over these surfaces. In addition to surface tempera-
ture, the inversion of these equations enabled the retrieval of
canopy water content/roughness equivalent g and a snow water
equivalent parameter W .

The results for the g parameter are given in Fig. 9 and
indicate that g corresponds closely with variations in the eight-
day MODIS leaf area index (LAI) among the sites, as well as
the seasonal trends at each site for 2003. One anomalous spike
in g at ATQ in 2003 (Fig. 9) during the fall freeze is similar
to such a spike in 2004, causing overprediction of Ts during
the fall freeze (Fig. 8). The influence of g is to modify the b
parameter in (2), increasing the predicted surface temperature.
The surface temperature prediction at 6.9 GHz is most sensitive
to the influence of g because this band is most sensitive to
surface water and thus will have a greater relative response
to the masking of the underlying surface, whereas the 89-GHz
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Fig. 9. MODIS eight-day LAI (in square meters per square meter) time series and AMSR-E auxiliary g (in kilograms per square meter) vegetation/roughness
parameter results for 2003. The points represent daily values of g, whereas the solid black lines represent an eight-day running average (gsm8).

Fig. 10. Snow depth at BRW and OAS (dashed gray lines) and AMSR-E auxiliary W (in centimeters). The points represent daily values of W , whereas the solid
black lines represent an eight-day running average.

band saturates quickly with even a small amount of vegetation.
The best Ts results were obtained by employing all bands
equally weighted in the iterative minimization. When only the
highest frequency bands (18.7–89 GHz) were included, Ts was
overpredicted, and retrieved values of g approached 6 kg/m2

at NOBS, which was assumed unreasonable for boreal forest
given the results of [15]. Similarly, when only the lowest bands
(18.7 GHz and less) were included, Ts was underpredicted.
The inclusion of a more detailed radiative transfer equation,
such as (3), may further improve results by accounting for
scattering effects. However, the surface temperature results of
this investigation show that bias introduced by scattering within
the vegetation canopy is a relatively small factor and can be
mitigated with the empirical parameter γ.

In contrast to a vegetation canopy, scattering is the main
effect of snow cover on the linear relation between Tbh and Tbv.
Scattering decreases the Ts estimates from (6) more strongly at
higher frequencies relative to lower frequencies, which is the
opposite spectral effect of vegetation absorption. This poses a
difficulty for the current algorithm, where vegetation persists
above the snow pack in winter, such as the boreal forest at
NOBS and OAS (Fig. 10). The opposing effects of vegetation
and snow on predicted Ts cause g to unreasonably decline
to zero during the winter at the NOBS evergreen forest site
and gives an unreasonably low estimate of W , rising only
above zero when the snow pack scattering spectral signal is
strong enough to overwhelm the vegetation absorbance spectral
signature. This pattern is also evident at the OAS site, where W
rises only briefly above zero, corresponding to the peak depth
of the in situ snow pack measurement. Some of the error in the
process-based winter Ts retrieval can be attributed to this effect
because minimizing Cf cannot arrive at unbiased Ts estimate
when a portion of the spectral signature is confounded by the
vegetation effect.

Snow packs also vary greatly in their physical characteristics
[29], and the simplistic treatment in this paper cannot account

for changes in snow grain size, the formation of ice lenses and
associated impacts on the extinction and scattering coefficients
influencing ωsn and bsn, which were held constant in this
investigation. However, the radiative transfer treatment of the
snow pack did produce a clear snow signal (Fig. 10). We
lacked ground data on snow for most sites in this paper, with
the exception of BRW and OAS; however, the snow signal
shows the expected seasonal pattern, accumulating throughout
the season and peaking before a rapid decline in spring.

V. CONCLUSION

The seasonal dynamics of multifrequency AMSR-E Tb ob-
servations and their correlation with near-surface soil and air
profile temperatures at high latitude sites were evaluated. The
results demonstrate that brightness temperatures were highly
correlated (r > 0.85) with minimum daily air temperatures
at forested locations and better correlated with soil tempera-
tures (r > 0.80) than with minimum daily air temperatures at
nonforested locations, with the highest correlation at frequen-
cies > 18.7 GHz. The linear correlation of Tb with surface
temperatures was lower at sites with low vegetation and high
soil moisture variability, such as the LTH grassland location,
and the linear correlation was completely decoupled at sites
with a large fraction of open water. These results indicate
that sensing depth can vary significantly among land covers;
changes in emissivity due to open water, soil moisture, and
depolarization from vegetation density are important factors;
and Tb observations maintain high correlation with surface
temperature at high latitudes under most common conditions
without explicit atmospheric corrections.

Two methods to retrieve soil temperatures in boreal and
Arctic landscapes from the AMSR-E sensor were devel-
oped and compared to in situ soil temperatures at biophys-
ical network sites. The regression method had lower overall
error (RMSE = 3.11 K) than the process-based method



2016 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 7, JULY 2007

(RMSE = 3.93 K), although performance was quite variable
between sites. Algorithm performance was primarily influenced
by: 1) the vertical gradient between near-surface Tsoil and Tmin,
which caused RMSE > 3 K for the process-based method at
the boreal sites and consistent bias offset of up to 4 K in the
regression method at the tussock tundra locations; 2) subgrid-
scale surface temperature heterogeneity within the AMSR-E
footprint represented by MODIS LST standard deviations,
which could be as much as 11 K in the fall freeze–thaw
transitions; 3) large fluctuations in surface dielectric properties
during freeze–thaw state transitions, particularly in the fall,
and the insulating and scattering influence of the winter-time
snow pack greatly increased error (RMSE increased by > 4 K)
during frozen periods; and 4) the accurate determination of
model constants and skill of algorithm parameters to represent
variable surface conditions and dynamic surface microwave
emission.

Our results suggest that atmospheric effects on passive
microwave measurements over high-latitude regions are less
important for soil temperature estimation than seasonal and
spatial variability in surface emissivity; however, the improved
treatment of atmospheric effects would likely further improve
results in future applications. Future work is needed to refine the
frequency-dependent effects of vegetation and seasonal snow
cover, to include more detailed radiative transfer equations, and
to continue to develop a dynamic freeze–thaw classification.
The soil temperature retrieval methods in this investigation are
appropriate for biophysical modeling activities in Arctic and
boreal regions. Furthermore, the iterative technique presented
in this paper and the associated auxiliary quantities will be
germane to other microwave-based land surface geophysical
parameter retrieval studies.
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