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Abstract

Using field data, Airborne Visible Infrared Imaging Spectrometer (AVIRIS) imagery, and Moderate-Resolution Imaging Spectroradiometer
(MODIS) data, a multi-scale analysis of ecosystem optical properties was performed for Sky Oaks, a Southern California chaparral ecosystem
in the spectral network (SpecNet) and FLUXNET networks. The study covered a 4-year period (2000–2004), which included a severe
drought in 2002 and a subsequent wildfire in July 2003, leading to extreme perturbation in ecosystem productivity and optical properties.
Two vegetation greenness indices (Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)), and a measure of
the fraction of photosynthetically active radiation absorbed by vegetation (fPAR), were compared across sampling platforms, which ranged in
pixel size from 1m (tram system in the field) to 1000m (MODIS satellite sensor). The three MODIS products closely followed the same
seasonal trends as the tram and AVIRIS data, but tended to be higher than the tram and AVIRIS values, particularly for fPAR and NDVI.
Following a wildfire that removed all green vegetation, the overestimation in MODIS fPAR values was particularly clear. The MODIS fPAR
algorithm (version 4 vs. v.4.1) had a significant effect on the degree of overestimation, with v. 4.1 improving the agreement with the other
sensors (AVIRIS and tram) for vegetated conditions, but not for low, post-fire values. The differences between MODIS products and the
products from the other platform sensors could not be entirely attributed to differences in sensor spectral responses or sampling scale. These
results are consistent with several other recently published studies that indicate that MODIS overestimates fPAR and thus net primary
production (NPP) for many terrestrial ecosystems, and demonstrates the need for proper validation of MODIS terrestrial biospheric products
by direct comparison against optical signals at other spatial scales, as is now possible at several SpecNet sites. The study also demonstrates
the utility of in-situ field sampling (e.g. tram systems) and hyperspectral aircraft imagery for proper interpretation of satellite data taken at
coarse spatial scales.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

An understanding of scaling effects is critical if we are to
properly interpret remotely sensed signals gathered at different
temporal and spatial scales (Lobo et al., 1997; Roberts, 2001;
Salomonson & Appel, 2004; Tian et al., 2003; Wu & Strahler,
1994). Satellite sensors provide large spatial patterns with
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regional or global coverage (Chen, 1999). However, the coarse
resolution of satellite sensors are problematic, particularly for
patchy landscapes (Turner et al., 2003). To properly validate
and interpret satellite imagery, additional remotely sensed and
biophysical data (e.g. ground truthing or aircraft imagery) are
needed (Chen et al., 2002; Lakshmi & Zehrfuhs, 2002; Peddle
et al., 2004; Reich et al., 1999; Turner et al., 2003). For
example, aircraft or field imagery at fine spatial scales (e.g. 1m
to 100m) can be used to extrapolate to coarse resolution data at
large scales (e.g. 1km). However, the spatial scale difference
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Fig. 1. Illustration of multi-scale sampling methods employed in this study. At the
top, the satellite sensor (MODIS) provides regional to global coverage with large
(1000m) pixel sizes). In the middle, the aircraft sensor (AVIRIS) can provide
images with an intermediate range of pixel sizes allowing us to compare ecosystem
optical properties at different scales. At the bottom, an automated mobile
spectrometer (tram system) provides periodic sampling of surface optical properties
along a 100-m transect, closely matched to the scale of a flux tower footprint.

370 Y. Cheng et al. / Remote Sensing of Environment 103 (2006) 369–378
between satellite and ground measurements present several
challenges for comparing measurements made across vastly
different scales (Aman et al., 1992; Gao et al., 2001; Lakshmi &
Zehrfuhs, 2002; Smith & Ballard, 1999).

There are many difficulties associated with cross-scale
comparisons. Area difference of different sensors require area-
weighting operations (Gitelson, 2004; Soegaard et al., 2000),
and different sensor algorithms are used to derive vegetation
indices and associated products (Chen, 1999). Furthermore,
surface heterogeneity causes key ecosystem processes to vary
with spatial scale (Chen, 1999). Additionally, each sensor or
algorithm has its own inherent error, which should be
considered in any cross-sensor comparison, but is often difficult
to assess directly. While fraught with many challenges, an
explicit comparison of different sampling scales provides a
useful means to validate satellite signals (e.g. MODIS
products). Such comparison can give confidence to calculations
of regional and global carbon budgets, or can indicate problems
in these calculations (or their underlying inputs or assumptions)
that need further improvement. Furthermore, multi-scale
analyses can indicate causes of variation at different scales in
optical properties that help reveal the controls of the ecosystem
carbon and water vapor fluxes for different ecosystems
(Ehleringer et al., 2002; Rahman et al., 2001; Schimel et al.,
2001; Wang et al., 2004).

The development of appropriate ground-based validation
techniques is critical to evaluate uncertainties associated with
satellite data-based products. Recently, validation studies
suggest considerable errors exist in some of the MODIS
products. Of primary concern are the LAI and fPAR products,
because they form the basis of most global models of terrestrial
productivity (Fensholt et al., 2004). Recently, studies from
several different ecosystems reported that MODIS fPAR
differed from field data, with most ecosystems showing over-
estimation of fPAR by MODIS (Fensholt et al., 2004;
Huemmrich et al., 2005; Turner et al., 2005). Recent studies
have also reported similar disagreements between MODIS-
derived LAI and independently derived LAI estimates from
models and ground-based measurements (Fensholt et al., 2004;
Huemmrich et al., 2005; Wythers et al., 2003).

This overestimation of fPAR or LAI by MODIS has
consequences for subsequent primary productivity (GPP and
NPP) products, which depend on fPAR or LAI, as well as
incident PAR, temperature and vapor pressure deficit (Reich et
al., 1999; Turner et al., 2003). Indeed, several reports have
indicated similar errors in MODIS primary productivity
estimates. Recently, MODIS gross primary productivity (GPP)
products have been compared with scaled GPP estimates
(25km2) derived from ground measurements at two forested
sites by the Bigfoot project research team (Reich et al., 1999;
Turner et al., 2003). This analysis revealed a mismatch between
MODIS GPP products versus ground-based GPP due to both
fPAR and light use efficiency differences (Reich et al., 1999;
Turner et al., 2003); MODIS GPP products tended to be higher
(2 to 5gC m−2 day−1 more) than ground measurements (Turner
et al., 2003). Rahman et al. (2004) reported overestimation of
MODIS GPP from a deciduous forest site in Indiana, with an
inability to capture the seasonal patterns during spring growth
and fall leaf drop. More recently, Turner et al. (2005) reported
that the degree of fidelity between field-based and MODIS-
based GPP and NPP varied considerably across ecosystems,
with MODIS GPP and NPP estimates being consistently low at
some sites (e.g. agricultural ecosystems) and high at others
(desert grassland and dry coniferous forest sites).

These recent findings indicate that further testing of MODIS
products against field-derived data is needed before we can have
confidence in these satellite products. Since the issue of accuracy
is often clouded by the fact that we are comparing different
sensors or sampling methods operating at vastly different spatial
scales, there is a need to develop standardized “scaling methods”
for comparing satellite data to field data. Further, there is some
indication in the recent literature that MODIS may tend to
overestimate in dry or semi-arid sites (Turner et al., 2005). Thus,
the objective of this paper is to present an approach for
comparing optical signals for a single chaparral ecosystem using
data from sensors at three different scales: satellite (MODIS),
aircraft (AVIRIS) hyperspectral images and field (tram)
measurements as a basis for satellite validation. The primary
focus of this study is on three optical indices, NDVI, EVI and
fPAR. The continuous dataset from this site, spanning extreme
wet and dry periods as well as a wildfire, provides a unique
opportunity to compare results across platforms over a wide
range of conditions. We present and evaluate a method for
linking coarse scale satellite data (1km pixel sizes) to fine scale
field measurements (1m pixel sizes) by using hyperspectral
aircraft imagery as an intermediate scaling tool (Fig. 1).
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2. Materials and methods

2.1. Site

The study was conducted at the Sky Oaks Biological Field
Station (33°23′N, 116°37′W) of San Diego State University,
located in southern California, at approximately 1420m in
elevation and 75km east of the Pacific Ocean. The site consists
of a chaparral stand that was previously burnt in 1898 (Marion
& Black, 1988) and recently burnt in July 2003. Adenostoma
fasciculatum, a dominant species in California chaparral, was
also the dominant species at this site. Other major shrubs
included Adenostoma sparsifolium and Ceanothus greggi
(Keeley, 1992). The site experiences a Mediterranean climate,
characterized by cool, wet winters and hot, dry summers, and
winter rainfall is periodically increased or decreased by El Niño
and La Niña events, respectively, providing tremendous
interannual variability in productivity.

3. Data

3.1. MODIS data

MODIS “cutout” surface reflectance and vegetation indices
(version 4) for Sky Oaks, California, were downloaded from the
Oaks Ridge National Lab's database at http://public.ornl.gov/
fluxnet/modis.cfm. The data from pixel 33 (a 1km2 pixel
including the flux tower and tram, Fig. 2) of a 7 by 7 pixel array
were extracted to construct a time series for comparison with the
same variables derived from AVIRIS and tram data. The NDVI
and EVI were 16-day composites and the fPAR was an 8-day
composite. The MODIS Quality Assurance values associated
Fig. 2. The MODIS pixel (1km2 parallelogram) overlaid on the AVIRIS
hyperspectral image at Sky Oaks in Southern California. Sky Oaks tram system
is located at the upper left corner of the MODIS “cutout” pixel. The
parallelogram shape of the MODIS pixel results from overlaying the MODIS
ISIN projection over the standard UTM projection applied to the hyperspectral
AVIRIS image.
with each date were used to evaluate the MODIS data quality,
with most dates rated “best possible,” in part reflecting the
excellent clear-sky conditions typical of this arid site. The
NDVI and EVI from MODIS were calculated as follows:

NDVI ¼ qNIR−qRed
qNIR þ qRed

ð1Þ

EVI ¼ G⁎
qNIR−qRed

qNIR þ C1qRed−C2qBlue þ L
ð2Þ

where,

ρNIR Near infrared reflectance
ρRed Red reflectance
ρBlue Blue reflectance
C1 Atmosphere resistance red correction coefficient
C2 Atmosphere resistance blue correction coefficient
L Canopy background brightness correction factor
G Gain factor

where L=1, C1=6, C2=7.5, G=2.5 (Huete et al., 1994, 1997).
MODIS 8-day fPAR (MOD15A2, both version 4 and 4.1)

was obtained from Boston University's FTP server. To derive
this dataset, the MODIS fPAR main algorithm was developed
using three-dimensional radiative transfer theory (Myneni et al.,
2002). A look-up table approach was used with an inverse
model based on a land cover (six major biomes) map at 1km
spatial resolution (Knyazikhin et al., 1998)). The model used
several fixed parameters characterizing a certain biome along
with vegetation structural information, soil brightness, and
meteorological input (precipitation and air temperature) for the
biome (Myneni et al., 1997)). MODIS surface reflectance was
compared to model-based results in look-up tables to derive all
possible solutions for fPAR (Knyazikhin et al., 1998)). The
archived fPAR product was the mean of the distribution
functions (Knyazikhin et al., 1998)). When this method failed to
find a solution (mainly due to cloudy conditions), a back-up
algorithm based on the NDVI–fPAR relationship was applied
(Myneni et al., 1997). In this dataset, only one data point was
derived from back up algorithm (Julian day 353 in 2003).

Note that our original analysis was conducted using MODIS
fPAR version 4, and in the course of this study, an error in the
version 4 fPAR code was discovered, requiring us to repeat the
analysis with version 4.1 fPAR, which improved the agreement
with fPAR derived from the other sensors. Consequently, our
primary study conclusions derive from the improved version 4.1
(unless otherwise noted, all figures present MODIS version 4.1
fPAR data). However, since previously published studies
(Fensholt et al., 2004; Huemmrich et al., 2005) have reported
results from earlier fPAR versions, we chose to include a
comparison of algorithm version in our analysis (see Fig. 8, and
Results and Discussion).

3.2. AVIRIS

The Airborne Visible Infrared Spectrometer (AVIRIS)
acquires hyperspectral data between 400 and 2400 nm with
an approximate bandwidth of 10nm (Green et al., 1998). For
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this study, a total of five available images were analyzed
between April 2002 and September 2003, with pixel sizes
ranging from 2.3 to 15.8m, depending upon flight altitude. The
time frame of AVIRIS flights was during mid-day (10:00 to
14:00), the same time period as the MODIS and tram data to
facilitate comparison. AVIRIS radiance images were converted
to surface reflectance using the radiative transfer software
ACORN (Goetz et al., 2003) (ImSpec LLC, WA, USA). To
compare AVIRIS optical signals to the MODIS pixel and the
tram sampling regions, the AVIRIS pixels matching the
locations of the tram and MODIS sampling regions were
extracted separately for analysis. Vegetation indices were
calculated from the averaged reflectance derived from these
separate regions of the AVIRIS images. The reflectance was
interpolated to 1 nm intervals using a linear interpolation
method with commercial software (ENVI, Research Systems,
Inc, CO, USA). The NDVI and fPAR were calculated from the
averaged AVIRIS image reflectance as follows:

NDVI ¼ ðR800−R680Þ
ðR800 þ R680Þ ð3Þ

fPAR ¼ 1:24� NDVI−0:168 ð4Þ

The fPAR equation (Eq. (4)) was a relationship derived
empirically by comparing NDVI values to field measured fPAR
values for a large range of southwestern vegetation (R2 =0.95,
Sims et al., 2006-this issue). In this relationship, a correction
was applied for the green area fraction of the vegetation,
eliminating any confounding contribution of non-photosynthet-
ic vegetation components (e.g. stems or dead leaves) to the
fPAR. Additionally, MODIS-simulated NDVI and EVI values
were calculated from AVIRIS. To do this, the spectral region
between 400 and 1000nm from AVIRIS reflectance images was
interpolated to 1nm intervals. Since there are multiple channels
for each MODIS band and these channels have slightly different
relative spectral responses (RSR), we resampled each channel's
RSR to 1nm intervals, and then averaged them together to
create an average RSR function for each band. To calculate the
MODIS band reflectance from hyperspectral data, we summed
the product of the average RSR and the input reflectance
spectrum and normalized this by the sum of the average RSR as
follows:

Band reflectance ¼ RðRSR⁎Input reflectanceÞ=RðRSRÞ ð5Þ
Eqs. (1) and (2) were applied to calculate MODIS-simulated
NDVI and EVI.

3.3. Tram system

The ground reflectance measurements were collected with
an automated, dual-channel hyperspectral spectrometer (Uni-
SpecDC, PP Systems, Amesbury, MA). Most data were
collected with the spectrometer mounted on a mobile “Tram
system” that provided repeated samplings of the same 100m
transect. This system consisted of a robotic cart mounted on an
elevated track. However, before the tram was constructed (May
2001), and briefly after the tram was destroyed by fire (July
2003), data were collected by manual measurement along the
identical 100-m transect. The ground resolution (“pixel size”)
for each tram measurement was roughly 1m2, but ranged from
0.75 to 1.80m2 depending on the height of the tram track,
which varied along the 100-m transect with topography. The
tram system provided the advantages of repeated and
automated sampling, allowing us to sample the identical
transect on the ground through time. The dual detector
spectrometer, with upwelling and downwelling detectors,
provided real-time correction of sky conditions, allowing for
atmospherically corrected surface reflectance even under
cloudy conditions. Tram reflectance data were processed to
reflectance using software (MultiSpec, available at http://
vcsars.calstatela.edu/lab_documents/mspec.html) that interpo-
lated wavebands to 1-nm intervals. The NDVI and fPAR used
in this analysis were calculated through the Eqs. (3) and (4)
from averaged surface reflectance along the 100m transect.
Additionally, MODIS-simulated NDVI and EVI values were
also calculated from tram data for comparison to MODIS's
vegetation indices products using the same methods described
in the AVIRIS data section.

4. Results

4.1. Surface reflectance

Noticeable differences were apparent in the reflectance
spectra obtained from MODIS, AVIRIS and the tram system.
Tram reflectance values tended to be higher across most
wavelengths than either AVIRIS or MODIS, and MODIS
reflectance values tended to be lower, particularly for the pre-
burn data (Fig. 3A). The AVIRIS reflectance spectra varied
slightly depending upon the footprint sampled (tram transect or
MODIS pixel), and yielded higher values for the tram region
than for the full MODIS pixel. The July 2003 fire caused the
reflectance spectra from all sensors to flatten at the red edge
(around 700nm) due to the loss of green vegetation. Differences
in reflectance spectra among instruments were reduced by the
fire, demonstrating that some of the variation between
instruments was due to heterogeneous vegetation cover across
the different sampling regions.

4.2. NDVI

A comparison of NDVI values between sensors revealed
effects of both sampling scale and NDVI formulation (Fig. 4).
The MODIS NDVI followed similar temporal patterns as the
AVIRIS and the tram data, but were consistently higher than the
tram NDVI values. AVIRIS NDVI values varied with sampling
footprint (tram transect or MODIS pixel). When simulating the
tram transect, AVIRIS NDVI (dark triangles in Fig. 4) yielded
excellent agreement with the tram NDVI values. When
simulating the MODIS pixel (open triangles, Fig. 4), AVIRIS
NDVI more closely approximated the MODIS values (i.e. were
higher than the tram NDVI values) but were not as high as the
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Fig. 3. MODIS, AVIRIS and Tram reflectance before fire (average of four
available data sets from all the platforms on 4/13/2002, 7/19/2002, 9/23/2002 and
3/7/2003) (panel A) and postfire (on 9/16/2003) (panel B). AVIRIS reflectance is
shown for two sampling regions: 1) an areamatching theMODIS pixel (“AVIRIS
MODIS”) and 2) an area matching the tram transect (“AVIRIS tram”).
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NDVI obtained from the MODIS pixel. When MODIS-
simulated NDVI values were calculated from tram and AVIRIS
data (instead of the narrow-band NDVI from Eq. (3)), there was
better agreement between the sensors, particularly after the fire
(Fig. 4, right panel), confirming that part of the differences
Fig. 4. Comparison of the Normalized Difference Vegetation Index (NDVI) calculate
shown in Fig. 2), AVIRIS and the Sky Oaks tram system. In the left panel, the NDVI
the NDVI from the tram system and AVIRIS are calculated using MODIS-simulated N
region matching the entire MODIS pixel. The solid triangle denotes NDVI derived fro
between AVIRIS and the tram, but not between MODIS and the tram.
between sensors was attributable to NDVI formulation.
However, MODIS NDVI values were still higher than either
the tram or AVIRIS NDVI values. Thus, it appeared that even
after considering spatial scale and NDVI formulation, some
residual effect remained, causing MODIS NDVI values to be
consistently higher than aircraft or tram data, particularly for
vegetated surfaces.

4.3. EVI

EVI exhibited remarkably good agreement across sensors
and sampling scales, but with considerably more “noise” than
NDVI (Fig. 5). The EVI from all the platforms showed clear
effects of season, drought and fire. With the exception of
occasional high “spikes” in the MODIS EVI values and a couple
of low AVIRIS EVI values during the drought period, all
sensors yielded nearly identical patterns and magnitudes of EVI,
even across these extreme perturbations. MODIS quality flags
revealed that most EVI values used in the analysis were from
nominally clear days only, the “spikes” for MODIS EVI might
be due to MODIS residual cloud contamination, view angles, or
the atmospheric correction (Huete et al., 2002). The general
agreement among sensors suggests that automated field data
(tram) can provide suitable validation for properly corrected
image data from aircraft and satellite.

4.4. fPAR

Both before and after the fire, AVIRIS fPAR values for the
tram area (solid triangles, Fig. 6) were indistinguishable from
the tram values. Similarly, before the fire, AVIRIS fPAR values
for the MODIS pixels were in close agreement with the MODIS
fPAR value, both in seasonal patterns and magnitudes, with
MODIS fPAR values being slightly higher than AVIRIS fPAR
(hollow triangles, Fig. 6). However, after the fire, MODIS fPAR
values were much higher than both the tram and AVIRIS values.
d from MODIS (Sky Oaks cutout pixel 33, which overlapped the tram region as
from the tram system and AVIRIS are calculated using Eq. (3). In the right panel,
DVI. The hollow down triangle denotes NDVI derived from the AVIRIS image

m the AVIRIS image region matching the tram transect. Note the close agreement



Fig. 5. Comparison of the Enhanced Vegetation Index (EVI) calculated from
MODIS, AVIRIS and the Sky Oaks tram system. The hollow down triangle
denotes that EVI was derived for the AVIRIS image matching the entire MODIS
pixel. The solid triangle denotes that EVI was derived from the AVIRIS image
region matching the tram transect. Note the close agreement among EVI values
from all platforms.
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At this time, when virtually no green vegetation remained on the
landscape, MODIS yielded high fPAR values (with an average
of 0.15 for MODIS, versus the more believable tram values of
approximately zero). The AVIRIS fPAR varied slightly with the
sampling footprint. When simulating the tram transect, AVIRIS
fPAR values (solid triangles, Fig. 6) were in exact agreement
with tram values. When simulating the MODIS pixel (open
triangles, Fig. 6) AVIRIS fPAR values were slightly higher than
the tram values, but not as large as the MODIS fPAR values.
Thus, it appears that the current MODIS 4.1 fPAR algorithm
overestimates fPAR for this site, particularly after fire, which
would lead to subsequent errors in biospheric products related
Fig. 6. Comparison of the fraction of absorbed Photosynthetically Active
Radiation (fPAR) calculated from MODIS, AVIRIS and the Sky Oaks tram
system. The hollow triangle denotes fPAR derived for the AVIRIS image region
matching the entire MODIS pixel. The solid triangle denotes fPAR derived from
the AVIRIS image region matching the tram transect. MODIS fPAR derived by
backup algorithm was indicated by up arrow (one data point only).
to fPAR (e.g. net primary productivity). Interestingly, the single
fPAR value (indicated by an arrow in Fig. 6), obtained from the
backup algorithm involving derivation of fPAR directly from
NDVI, was much lower than the fPAR values from the standard
MODIS algorithm and was indistinguishable from the tram
data.

In the course of this study, we observed even larger
differences between MODIS version 4 fPAR and field-based
fPAR from our study (not shown). This overestimation was
considerably reduced when we repeated this analysis with
version 4.1 fPAR suggesting that earlier versions of the MODIS
fPAR algorithm may have tended to overestimate fPAR values
relative to direct field data.

The comparison of NDVI, EVI and fPAR across sampling
platforms is summarized in Fig. 7, which provides pairwise
comparisons between AVIRIS-derived indices (X-axis) and
either the MODIS or tram-derived indices (Y-axis), with the 1:1
line provided as a reference. Note that for the two regressions in
Fig. 7. Pair-wise comparisons between AVIRIS and either tram (open circles) or
MODIS (closed circles) indices (NDVI, EVI, and fPAR). The 1:1 line is
provided as a reference (dotted line). In these comparisons, the AVIRIS values
were derived from regions of interest matching the MODIS (close symbols) or
tram (open symbols) sampling regions.



Fig. 8. Comparison of MODIS fPAR versions 4.0 vs. 4.1 for our study site. Note
that version 4.1 reduced the fPAR values, particularly for high fPAR values, but
did not change the low (post-fire) values appreciably.
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each figure, the AVIRIS values were calculated from contrast-
ing AVIRIS footprints (matching either the MODIS or the tram
sampling footprint). Several points can be concluded from these
pairwise comparisons. The regression line comparing AVIRIS
and MODIS NDVI is slightly above the 1:1 line, supporting the
conclusion of a slight overestimation by MODIS NDVI. In
contrast, the regression line comparing AVIRIS and tram NDVI
are indistinguishable from the 1:1 line, indicating good
agreement between these sensors and platforms. For EVI,
both regressions (AVIRIS-MODIS and AVIRIS-tram) are
slightly above the 1:1 line, with the two regression lines are
indistinguishable from each other. This reflects the very close
agreement between tram and MODIS EVI (also evident in Fig.
5), and indicates that the AVIRIS EVI values are slightly lower
than either the tram or MODIS EVI values. For fPAR, the
AVIRIS-MODIS regression falls above the 1:1 line, and this is
particularly clear for the lowest fPAR value (the post-fire value),
when no green vegetation was present. By contrast, the
AVIRIS-tram regression is indistinguishable from the 1:1 line,
indicating good agreement between these the fPAR derived
from these two platforms. The degree of scatter in these
regressions (summarized by the R2 and p values, Table 1),
provide some indication of the fidelity between values across
platforms over widely varying conditions (wet and dry years,
and pre- and post-fire). For all comparisons, the close agreement
across sampling platforms (indicated by high R2 values and low
p values) indicates that all sensors and indices are closely
following the seasonal and interannual variability in ecosystem
productivity. Particularly remarkable is the very close agree-
ment between the tram and AVIRIS NDVI and fPAR values
(indicated by high R2 values, low p values, and overlap with the
1:1 line).

The effect of MODIS fPAR algorithm version is illustrated in
Fig. 8, which compares the v. 4 to the v. 4.1 MODIS fPAR
collections across all dates for this site. Particularly at high
fPAR values (when green vegetation was present on the
landscape), the earlier (v. 4) fPAR collection yielded very high
values, which were considerably reduced in the newer (v. 4.1)
fPAR collection. However, there was little change for low fPAR
values (indicating post-fire data, when no green vegetation was
Table 1
Regression statistics for Fig. 7

Indices Items Tram MODIS

NDVI Slope 0.8097 1.0394
Intercept 0.0422 0.0268
R2 0.9909 0.9647
P-value 0.0004 0.0029

EVI Slope 0.9231 0.9167
Intercept 0.0274 0.0257
R2 0.8382 0.9280
P-value 0.0291 0.0084

fPAR Slope 0.8097 0.8125
Intercept 0.0204 0.1052
R2 0.9909 0.9068
P-value 0.0004 0.0124

In each regression, AVIRIS values are compared to corresponding values for
either the tram or MODIS sensors.
present on the landscape). This comparison reveals a significant
impact of the MODIS algorithm version on fPAR, which may
partly explain the tendency for MODIS fPAR to over-estimate
fPAR for a variety of terrestrial ecosystems around the world
(Turner et al., 2003).

5. Discussion

The results presented here clearly illustrate some of the
challenges faced by comparing optical data across vastly
different spatial scales (1m pixels to 1000m pixels, a difference
of 3 orders of magnitude), and the value of a multi-scale
sampling approach to bridging these vastly different scales.
MODIS data and tram data yielded remarkably similar temporal
patterns in NDVI, EVI, and fPAR. However, the higher MODIS
NDVI and fPAR values suggest that these MODIS products are
currently overestimated in some situations, and thus may be
resulting in abnormally high NPP estimates. Our findings of
high MODIS NDVI and fPAR values are in agreement with
other recent validation efforts (Turner et al., 2003), and suggest
that errors remain in the current MODIS algorithms for these
terrestrial biospheric products. The reasons for these errors
remain unclear, largely due to the relatively small numbers of
validation efforts to date, the various MODIS algorithm
versions used, and due to the obvious difficulties in validating
such large-scale (1000km) pixels, which greatly exceed the
scale of most field based measurements. Additionally, in the
composite (8- or 16-day products) many of the possible error
sources are invisible to the end user. That, along with the
evolving nature of the MODIS algorithms, along with their
inherent complexity, makes it difficult to track exact sources of
error. However, the results presented here provide some insight
into the cause of this disagreement.

The use of the AVIRIS data to simulate both tram and
MODIS data enabled us to explore the potential causes of
difference between MODIS and tram data. The different
sampling regions of the tram and MODIS could partly explain
the higher MODIS NDVI and FPAR values; using AVIRIS to
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simulate the MODIS pixel area increased the NDVI and fPAR
values slightly over the tram values, but not enough to fully
explain the even higher MODIS values. Similarly, applying the
identical MODIS NDVI formula to tram and AVIRIS data
brought the NDVI values from the three platforms closer
together, but still could not fully explain the higher MODIS
NDVI and the very high fPAR values after the disturbance.
Thus, we conclude that there are unidentified errors remaining
in the MODIS processing that result in the overestimation of
NDVI and fPAR.

It is possible that errors in atmospheric correction could
partly explain the slightly higher MODIS NDVI values relative
to the other sensors. Overcorrection for atmospheric scattering
could cause artificially low red reflectance values and lead to
high NDVI values, which is consistent with the results shown in
Figs. 3 and 4. Additionally, other sensor calibration, design,
background noise, or sampling issues (e.g. viewing angle) may
be factors in the slightly higher MODIS NDVI values. These
possibilities cannot be directly evaluated in the final MODIS
composite products, which represent the sum of many data
processing decisions made by several MODIS processing
teams. Thus, a full evaluation of these possibilities is beyond
the scope of this study. Further studies should focus on isolating
the various possible reasons for the high NDVI values obtained
with the MODIS sensor by looking at each step in the data
processing stream.

The EVI appeared to be relatively scale-independent in that it
yielded the best agreement between the tram and MODIS
platforms. Presumably, this is because EVI reduces errors
caused by atmospheric scattering and soil background (Huete et
al., 2002), both of which were potential error sources in our
study. However, the cause of the noise in the EVI data (high
spikes, particularly in the earlier MODIS data) remains unclear.
Similarly, the reason for the slightly lower AVIRIS EVI values
relative to the tram and MODIS remains unclear, but could be
partly due to the different atmospheric correction approaches
used for the different sensor platforms. Previous studies have
shown that MODIS EVI worked well in a highly disturbed,
burned areas through a dark target-based atmospheric correction
with MODIS surface reflectance data (Miura et al., 2001). The
comparison of EVI with NDVI indicates that background
correction is very important, especially for landscapes with
open canopies, which includes desert and shrubland such as this
semi-arid chaparral site (Huete et al., 2002). EVI has the
additional benefit of not saturating as easily as NDVI for
ecosystem with a high leaf area index (Gao & Li, 2000) or with
high chlorophyll levels (Xiao et al., 2004), but it is not clear that
this benefit had any relevance in this relatively sparse chaparral
stand. Further study should focus on the relative merits of NDVI
and EVI across a range of spatial scales and ecosystems.

Since fPAR is the basis for the terrestrial NPP products
(Nemani et al., 2003), overestimation of fPAR would
necessarily lead to overestimation of NPP, as has been recently
reported for an eastern deciduous forest (Rahman et al., 2004).
The most troubling finding of this study is apparent overesti-
mation of fPAR by MODIS after fire. After the fire, the MODIS
fPAR product was approximately 0.15 (15%), a remarkably
high value for a burned area having an fPAR of essentially zero,
which was confirmed by both tram and AVIRIS measurements.
The overestimation of MODIS fPAR was particularly notice-
able in earlier MODIS products (version 4) (see Fig. 8). While
the version 4.1 collection is improved over version 4 (Fig. 8),
there appears to be remaining problems with the fPAR retrieval,
particularly at low values, that have not been completely solved
in the latest (v. 4.1) code.

Since a land cover map is used in the primary MODIS fPAR
algorithms (Myneni et al., 2002; Tian et al., 2004), it is possible
that the consistently high fPAR values after fire, result in part
from applying a fixed biome value to this burnt chaparral site,
and from the subsequent radiative transfer code that has biome-
specific parameters. Because the dominant MODIS fPAR
algorithm requires the use of look up tables for different
biomes, this could easily be a source of error in fPAR derivation
if the wrong biome classification were used. However, we
examined this issue, and found that the biome classification,
while originally incorrect for this site in version 4, was corrected
to “open shrubland” for the version 4.1 fPAR retrieval, and
probably not a significant source of error in this particular case.
Thus, it seems likely that other steps in the radiative transfer
code could be the source of the apparent overestimation of
fPAR. It remains unclear whether this conclusion is a general
one that can be applied to other ecosystems, or whether it
reflects a characteristic of this particular site. Further work
across a wide range of ecosystems would be needed to properly
resolve this question.

Several studies have indicated that fPAR can be directly
derived from NDVI without the need for ecosystem specific
information such as biophysical or meteorological data (Gamon
et al., 1995; Sims et al., 2006-this issue). Our study also
demonstrates that using the backup algorithm for fPAR (an
NDVI-driven algorithm) resulted in a MODIS fPAR values
indistinguishable from that of ground measurements after fire
(but note that this conclusion was gained for a single point
indicated in Fig. 6). Consequently, we recommend a more
extensive comparison ofMODIS fPAR fromdifferent algorithms
against ground based and aircraft measurements at a wider range
of sites to evaluate sources of the continued disagreement
between MODIS, AVIRIS and field-based fPAR measurements.
To help evaluate fPAR retrievals and isolate the source of the
apparent problem in the main MODIS fPAR algorithm, these
comparisons should include a variety of ecosystem types and
should also include extreme cases (e.g. complete snow cover or
bare ground following fire), as these provide useful reference
points with clearly definable conditions of low NDVI and fPAR.

A primary conclusion of this study is that continuous optical
monitoring in the field with automated mobile spectrometers
(tram system) provides an invaluable validation tool for MODIS
products, revealing current strengths and weaknesses of these
new satellite products. Furthermore, aircraft hyperspectral
imagery (AVIRIS) provides an essential intermediate-scale
tool for bridging the large gap in spatial scales that necessarily
exist between satellite and field data. The excellent agreement
between AVIRIS and tram data suggests that these two
platforms provide reliable and coherent data suitable for ground
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validation of satellite based measurements. The good agreement
with EVI across all platforms, along with the fPAR disagree-
ment, suggests that errors in MODIS products derive not from
the instrument itself, but from the particular choice of
algorithms used. Tram data provide continuous data at a
relatively low cost needed for comparison with satellite or
aircraft data, but are limited to relatively small regions (much
smaller than a typical MODIS pixel). Aircraft hyperspectral
imagery provides an ideal way to “bridge the gap” between such
fine-scale data to the relatively coarse satellite data. Such
systematic, multi-scale sampling, if adopted at additional
ecosystems around the world, would greatly assist in under-
standing the strengths and weaknesses of current satellite
products as a basis for improving these products.

Semi-arid sites such as this one, with their exposure to
disturbance and large swings in productivity, provide robust tests
of the behavior of different sensors and algorithms under a wider
variety of conditions that is possible with relatively invariant
sites. Similarly, further multi-scale tests across a diversity of
ecosystems (e.g. Turner et al., 2005) would be particularly
instructive. The SpecNet network (Gamon et al., 2006-this issue)
provides an ideal starting point for such sampling.
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